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ABSTRACT

Throughput and latency critical applications could often benefit
of performing computations close to the client. To enable this,
distributed computing paradigms such as edge computing have
recently emerged. However, with the advent of programmable data
planes, computations cannot only be performed by servers but
they can be offloaded to network switches. Languages like P4 en-
able to flexibly reprogram the entire packet processing pipeline.
Though these devices promise high throughput and ultra-low re-
sponse times, implementing application-layer tasks in the data
plane programming language P4 is still challenging for an applica-
tion developer who is not familiar with networking domain. In this
paper, we first identify and examine obstacles and pain points one
can experience when offloading server-based computations to the
network. Then we present P4rrot, a code generator (in form of a
library) which allows to overcome these limitations by providing a
user-friendly API to describe computations to be offloaded. After
discussing the design choices behind P4rrot, we introduce our
proof-of-concept implementation for two P4 targets: Netronome
SmartNIC and BMv2. To demonstrate the applicability of P4rrot,
we investigate case studies in the context of publish-subscribe sen-
sor data processing and real-time data streaming, supporting, in
particular, MQTT-SN and MoldUDP packets.

CCS CONCEPTS

• Networks → In-network processing; Programmable net-

works; • Software and its engineering → Source code genera-

tion;
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1 INTRODUCTION

The compute infrastructure is becoming increasingly distributed, of-
fering multiple locations to serve requests and execute applications.
This introduces interesting opportunities for spatial optimization:
by bringing computation and data storage closer to the requester
(or client), response times and bandwidth can often be greatly im-
proved.

Early examples of this paradigm are the distributed domain name
system and the content distributed networks created in the late
1990s. [3]. More recent examples include the edge computing para-
digm as well as the trend towards in-network computing.

This paper is motivated by a novel offloading opportunity in-
troduced by software-defined networks [10], and in particular pro-
grammable data planes [12]. Programmable networks have recently
received much attention both in academia and industry, for their
support of fast networking innovations: while developing new

semiconductors is a time-consuming and expensive process, a pro-
grammable data plane provides an efficient and flexible way to
support new protocols and new requirements. The data plane pro-
gramming language P4 (Programming Protocol-Independent Packet
Processors) is independent of the forwarding hardware design, and
relies on a compiler specific to the hardware (e.g., SmartNICs, NetF-
PGAs, programmable ASICs), thus allowing the fast implementation
of new protocols and networking algorithms. Over the last years,
several interesting use cases for programmable data planes have
been demonstrated that are related to resilience, security, resource
allocation, among others [12]. Like how people started using GPUs
for non-graphics-related use cases (e.g., crypto mining and deep
learning), many research projects focus on how programmable data
planes could be used for executing application layer tasks (e.g.,
emergency stops, robot control, or even key-value stores [2, 7, 11]).

P4 has proven useful for implementing application-layer tasks,
but even simple functionalities can quickly result in complex soft-
ware projects. This is due to the limitations of the underlying de-
vices and the fact that P4 was not designed to support this kind of
computations. For example, consider the following scenario which
highlights some of the challenges that developers can face when
implementing L7 logic. Suppose that in order to precalculate an
aggregated value to reduce the CPU load, a programmer wants
to calculate and insert an additional integer at the beginning of
the UDP payload. This seemingly simple task requires to parse the
usual headers, adjust the total length field in the IPv4 and UDP
headers, recalculate the checksum, and implement a simple static
forwarding. Even if the programmer already wrote similar and rel-
evant code in the past (e.g., a ring buffer made of registers), it is
hard to reuse this implementation since P4 does not easily support
to encapsulate such a high-level abstraction. Along the way, the
programmer might further need to use workarounds and different
tricks to avoid resource limitations and compiler bugs. Whether
calculations are peformed with a table or if-else statements may
appear to be an implementation detail, is actually a design decision
from a P4 point of view, requiring additional effort. If the program-
mer then wants to further extend the functionality, e.g., by inserting
a second integer, she must modify the existing code in multiple dif-
ferent places. Also testing is complex, and may require a complete
pipeline with whole packets (not only specific headers or fields), as
there is typically no good way to unit test implementation parts.

We argue that automatic code generation can greatly simplify
implementing application-layer tasks if we narrow down the scope
of target features. By application-layer tasks, we mean functional-
ities concerned about the payload rather than other networking
layers. Against this backdrop, our main contribution in this paper
is P4rrot, a code generator (in form of a library) for P4, to support
and speed up the offloading process. With P4rrot, the developer
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Figure 1: The high-level overview of the use of P4rrot.

can describe the application layer logic using our (Python3) library1
and generate the equivalent P4 code. P4rrot does not require a
new programming language, which also simplifies the adoption of
new P4 features. In this paper, we discuss the main design aspects
of P4rrot and show its early-stage Python3-based implementation
for BMv2 (Behavioral Model v2) and Netronome NFP (Netronome
Flow Processor)targets. We have chosen BMv2 and Netronome NFP
targets as they both use the same V1Model architecture. While
BMv2 can be considered as an ideal target where the generated
code can be executed without any restrictions, NFP smartNIC is a
more sensible target with hardware and compiler constraints to be
considered. Among the possible hardware targets we selected this
smartNIC since it seems better suited for server offloading than
constrained ASICs. Note that we also work on adding support for
Intel Tofino ASICs because of their widespread use, high through-
put and ultra-low latency, having promising initial results at the
time of writing this paper.

To demonstrate the improved development experience given
by P4rrot, we discuss two in-network computing projects in the
context of publish-subscribe sensor data processing applications
and real-time data streaming, supporting, in particular, MQTT-SN
and MoldUDP packets (relevant, e.g., for high-frequency trading).
These case studies show that our approach indeed allows to make
simplifications and assumptions, and automate tasks that the orig-
inal P4 language cannot do. We also demonstrate the viability of
our approach using a Netronome SmartNIC and the BMv2 software
switch.

Fig. 1 illustrates the architecture of our proposed solution. The
code generator takes two inputs: a P4 template describing the usual
parts of a pipeline, and the application-specific logic using P4rrot’s
API. After running the code generator, we get a P4 code that can be
further compiled to the desired target using the vendor-provided
compiler.

2 PAINPOINTS

While P4 is a great language for implementing new protocols and
networking features, and also sufficiently expressive to describe
even application layer logic, it was not designed with offloading
applications in mind. In this section, we elaborate on the previously
mentioned hindering factors and provide some examples.
Boilerplate code. P4 allows the programmer to define and parse
every header in a customised way. This flexibility is a cornerstone
for implementing new protocols or innovatively reusing fields. Ac-
cordingly, implementations often rely on many lines of boilerplate
code, e.g., defining and parsing standard and well-known headers,
1https://github.com/Team-P4RROT/P4RROT

checking and recalculating checksums or implementing basic for-
warding rules. However, when we only care about the application
layer, the standard implementation of these functionalities is still
necessary even if we do not wish to change them. This can be time
consuming and also render the code long and hard to read.
Cross-layer dependencies. Certain header fields depend on the
encapsulated content, for example the total length field in the IPv4
header, the length field in the UDP, and the checksum in the UDP
header. These cross-layer dependencies might be hard to maintain
while we are focusing on higher-level responsibilities. When we
change the size of the processed packet by adding and removing
parts of it, we have to adjust all of these fields one by one (e.g., IPv4
total length or UDP length). Moreover, we need to check the adjust-
ments over and over again when we introduce new functionalities
during the project’s life-cycle, which can be cumbersome.
Lack of high level encapsulation. Technically, we can separate
different functionalities in different control blocks, but there is no
good way to encapsulate reusable data structures and algorithms
efficiently. For example, we might want to use a simple ring buffer
or a bloom filter based on registers in different projects. Ideally, this
would be achieved by defining different control blocks for differ-
ent methods for the same data structure. However, registers and
other stateful elements are local to the enclosing control block. As
a workaround, one might consider creating a (parametrised) con-
trol block and passing the requested operation and parameters in
metadata. This however is fairly cumbersome and requires addi-
tional checks and memory to execute the code for the requested
operation.
Implementation details become design decisions. Sometimes,
the exact same functionality can be implemented with different P4
building blocks to avoid the resource limitations of the given target.
For example, we can check whether two values are equal either
with a simple if-statement, or we can calculate their difference and
check whether it is 0 or not with a match-action table. Switching
between these implementations is not easy.
Fragmented code. If a programmer wants to modify or extend
the current solution, she might need to modify the code at multiple
different places. Consider the following example. Initially, an extra
integer was inserted before the UDP payload using a custom header
with a single bit<32> field. Later, it was decided to insert two
integers. To achieve that we extend the custom header definition
with a second bit<32> field, then adjust the IPv4 and UDP length
fields, assign the value in the control block, and finally add the extra
field to the checksum calculation in the deparser.
Hard to test. Testing P4 code is often considered difficult, and we
generally still lack efficient unit testing frameworks, that support
early testing of just parts of the code. Even a simple functionality
(adding two numbers) might require a long and complex code in
order to be tested (e.g. using PTF tests [14]). Once we have this
code, whole packets have to be generated and set to exercise our
solution. Finally, if an error is detected, it is still hard to debug and
find the faulty code section.
Tricks and workarounds. Last but not least, implementations
often use technical tricks and workarounds to avoid resource lim-
itations or overcome compiler bugs. Technical manipulations are
necessary when there are slight differences between the target de-
vices. For example, the length of the physical port numbers on the
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BMv2 and a Netronome smartNIC are different, although they both
use the V1Model architecture. Some compilers might also be buggy,
thus requiring additional effort from the programmer. Furthermore,
the programmer has to deal with resource limitations. For example,
if the comparison is limited to 16-bit long values, one may use two
nested if statements to check the equality of two 32-bit values. We
argue that these kinds of problems may occur more often during
an in-network computing project, since these applications aim to
stretch the boundaries of the target device.

3 GOALS AND REQUIREMENTS FOR P4RROT

This section lists the main principles the design and implemen-
tation of P4rrot follows, divided into two categories. First, we
highlight the features that overcome the previously described pain
points. Second, we describe additional requirements improving the
adaptability of our solution.

3.1 Painkillers

An important decision underlying P4rrot’s design is that we limit
our target programs to the set of offloaded application layer logic,
thus making the design simpler in many ways. Having to deal only
with a limited amount of commands and data types (e.g., a 3-bit
long field does not make much sense in this context), we can make
powerful assumptions and automate many tasks. Simplicity and
structure allow the developers to keep their work compact and
prevent code fragmentation. Furthermore, we require that imple-
mentation details should remain implementation details, preferably
in the form of “hints”. For example, checking the equality with an
if-else statement or using a table can be simply an optional param-
eter. Our solution should further be able to encapsulate complex,
often used logic, and hide data structures and algorithms (like a
ring buffer made of registers) behind a straightforward API. Adding
similar extensions should also be easy. Last but not least, once we
fully or partially described the business logic, we want to simulate
the behaviour of the application layer without even generating the
P4 code. Being able to account for overflows and other low-level
details is crucial.

3.2 Adaptability

The code generator should leverage an existing and well-known
language in an easy-to-understand way, so programmers can work
with a familiar syntax and are productive quickly. Generally, the
generated P4 code should be human-readable and reasonably easy
to understand. The programmer should still have the opportunity to
override the code generator’s decision, e.g., for further performance
optimizations. The generator only performs simple semantic checks,
and for instance, does not override constant values. By avoiding
complex verifications, the implementation of possible extensions is
simplified. We also note that target-specific checks (e.g. resource
constraints) might be even impossible to implement because of
legal restrictions. Also error messages should be easy to understand
and point to the line where the programmer made the mistake.
Since P4rrot is essentially a library that allows programmers to
describe the abstract syntax tree (AST) of the offloaded solution by
defining a complex object, the semantic checks are run after adding

fp = FlowProcessor(
        istruct = [('guess',uint8_t)],
        locals  = [('l',bool_t),('good',bool_t),('solution',uint8_t)],
        ostruct = [('r1',uint8_t),('r2',uint8_t)],
        state   = [ SharedVariable('shared_solution',uint8_t) ]
    )
 
fp\
.add(Comment('init variables'))\
.add(ReadFromShared('solution','shared_solution'))\
.add(AssignConst('good',True))\
.add(AssignConst('r1',ord(':')))\
.add(AssignConst('r2',ord(')')))\
.add(Comment('check whether solution<guess'))\
.add(LessThan('l','solution','guess'))\
.add(If('l'))\
        .add(AssignConst('r1',ord('x')))\
        .add(AssignConst('r2',ord('<')))\
        .add(AssignConst('good',False))\
    .EndIf()\
.add(Comment('check whether solution>guess'))\
.add(GreaterThan('l','solution','guess'))\
.add(If('l'))\
        .add(AssignConst('r1',ord('x')))\
        .add(AssignConst('r2',ord('>')))\
        .add(AssignConst('good',False))\
    .EndIf()\
.add(Comment('generate a new number if required'))\
.add(If('good') )\
        .add(AssignRandomValue('solution',0,255))\
        .add(WriteToShared('shared_solution','solution'))\
    .EndIf()\
.add(Comment('send back the result'))\
.add(SendBack())
   
 
fs = FlowSelector(
        'IPV4_UDP',
        [(UdpDstPort,5555)],
        fp
    )
 
solution = Solution()
solution.add_flow_processor(fp)
solution.add_flow_selector(fs)
solution.get_generated_code().dump('test.p4app')
 

Defining inputs and
outputs and other
variables for the
FlowProcessor

Populating
processing steps

Channeling the
proper packets to the
FlowProcessor with
the FlowSelector 

Composing the parts
of the solution.

Figure 2: Sample usage of P4RROT implementing a number

guessing game

each and every node. By doing so, the generator library can raise
an exception at any line as early as possible.

4 ARCHITECTURE AND DESIGN

This section describes the internal working of P4rrot’s code gen-
erator through the main components of an offloading project. For
a better understanding, we provide a simple example first. Then
we explain the main design decisions and architectural elements
behind the scenes.

4.1 A simple example

To illustrate the various features and the style of an offloading
project, let us consider a simple example. Fig. 2 shows the imple-
mentation of a simple number guessing game. Although it is not
particularly useful, it provides an easy-to-understand task that does
not require any background knowledge. The client has to figure
out a randomly generated number. After each guess, there are three
possible outcomes: the solution is lower than the provided number,
the solution is greater than the provided number, or the client wins
(and a new number is generated).

First, we create a FlowProcessor in a declarative input-output
style. The input is a single byte representing the client’s guess, and
the output is two bytes (treated as characters in the later stages).
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Figure 3: The different ways the user can transform a packet.

Additionally, we use some local variables and a shared variable to
store the correct solution. After that, we populate the processing
steps with various commands to define our application-level algo-
rithm. We assume that the client has the correct answer, and then
we change it if the guess is less or greater than the right solution in
the SharedVariable. In the end, we send back the packet where it
came from with a single Command. Using a FlowSelector, we also
need to define which packets should be processed by the previously
described FlowProcessor. In the end, we assemble the parts on a
single object and generate the P4 code using the provided template.

4.2 Processors

FlowProcessor objects are the essence of the offloaded solution
describing the application-layer calculations. During the instanti-
ation, the programmer defines the input and the optional output
structures. By default, the code generator sets the input header
invalid and the output header valid, thus leaving room for mod-
ifying the packet structure. Moreover, if the truncate extern or
similar functionality is available, the remaining payload can also
be removed. If the output structure is not defined, the original in-
put header is not invalidated. Fig. 3 depicts the different ways the
user can transform a packet. The use of local variables, temporary
headers and, stateful elements are also possible.

A FlowProcessor contains a Block object which encapsulates
a sequence of Commands. Commands are responsible for describing
different operations performed on the packets. They can vary from
low-level casting to high-level data structure manipulations. Be-
sides the necessary input and output variables, they might provide
different implementation hints using optional variables.

When a new Command is added to a Block, it returns itself or
another Block. Thanks to this design, it is possible to describe algo-
rithms reasonably intuitively, similar to the JavaScript Promises or
the LINQ library in C#. Comfortably defining if-else statements is
also possible. Once we add an If command, we return a ThenBlock
(which inherits from the Block class). The ThenBlock instance can
return an ElseBlock using its Elsemethod. Finally, the ElseBlock’s
EndIf returns the original parent Block. Fig. 4 depicts the class
diagram of the previously mentioned objects with a simple example.
We define Switch statements and Atomic blocks similarly.

Leveraging this design, the code generator library can provide
simple semantic checks upon adding Commands and simulate the
behavior of a FlowProcessor.

4.3 Selectors

To define what kind of packets are processed in the offloaded solu-
tion, the user script can create FlowSelectors: simple objects using

Block

+ add(Command c): Block

ThenBlock

+ EndIf(): Block

+ Else(): ElseBlock ElseBlock

+ EndIf(): Block

Command

+ returnOnAdd(): Block

If

- thenBlock: ThenBlock

- elseBlock: ElseBlock

+ returnOnAdd(): ThenBlock

blockA.\
.add( ConstAssign('x',5) )\
.add( If('b') )\
        .add( ConstAssign('y',5) )\
    .Else()\
        .add( ConstAssign('y',5) )\
    .EndIf()\
.add( ConstAssign() )

<- returns blockA

<- returns blockA

<- returns blockA

<- returns  a new ThenBlock

<- returns  the same ThenBlock

<- returns  a new ElseBlock

<- returns  the same ElseBlock

Figure 4: UML class diagram and an example explaining the

internal workings of the if-else statement’s implementation.

IPv4

Eth UDP

TCP

check 
C

parse 
C

check 
B

parse 
B

check 
A

parse 
A

Figure 5: A simple parser-chain.

the code generator library. First, the FlowSelector defines the un-
derlying standard protocols with a single constant (e.g. IPV4_UDP).
Since one might have different selectors for the same underlying
protocols, the code generator organizes the P4 parser states in a
chain-like structure (see Fig. 5). If the condition of the selector
is met, then we extract the application-layer data, otherwise we
check the next selector in a different state. If there is no next se-
lector, we proceed to the next desired state, e.g. accept. To deal
with unused, empty chains, one can use #define pragmas. The P4
template always expects an empty chain unless a particular macro
is defined. The generator can easily insert this #define pragma
into the generated parser code.

The programmer can define the selection criteria using a list of
pairs. Each pair consists of a field name and a required value. The
used field can be a standard field of a standard header (e.g., UDP
destination port) or the member of a user-defined struct describing
the beginning of the application data. The latter one leverages the
lookahead capabilities of the P4 parser.

4.4 Templates

Templates serve as a static starting P4 code for an offloading project.
It can be used to describe the parsing of standard headers or im-
plement basic forwarding rules. The template only references the
generated code parts using the #include preprocessor pragma.
Theoretically, the developer can use as many extra generated files
as she wishes. However, at least one include pragma in the cus-
tom headers, parsing, header-struct body, ingress declarations, and
ingress apply block seem necessary. A template must also provide
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an interface for the code generator by defining certain metadata
variables and macros. For example, we maintain the number of
added and removed bytes using metadata variables and provide
workarounds for the atomic block using macros. One might use
macros for every purpose, thus making the template codes more
flexible and more complex at the same time.

5 CASE STUDIES

This section shows the application of P4rrotwith two case studies.
The complete source code of these case studies (and other simple
examples) is also available under an MIT license.

5.1 Publish-subscribe sensor data

We consider MQTT-SN, a simplified version of the MQTT publish-
subscribe protocol, and a popular solution for Internet-of-Things
protocols. In this architecture, the clients subscribe to different
topics represented by a string or a topic ID. Once someone (e.g., a
sensor) publishes a message, the central component, called broker,
distributes the data to every subscriber. The question arises of how
topic names convert to topic IDs. MQTT-SN has an extra REG and
REG-ACK packet querying the ID for a given topic name.

In our scenario, we have a sensor emitting the temperature value
and a safety component that publishes an emergency “stop” mes-
sage if this value exceeds 70. The safety component runs inside a
server using a smartNIC (or other suitable P4 programmable device).
Our goal is to reduce the response time of the safety component.

To implement this functionality, We create a FlowSelector pre-
scribing the “publish” messages to our FlowProcessor performing
this simple check. This processor gets the required topic ID from a
SharedVariable (a long register array in P4). If the message is a
temperature value above the threshold, we transform the packet
and send it back as an emergency stop message. This transforma-
tion overrides the topic ID to the “alarm” topic’s ID (also got from a
SharedVariable) and the message payload. Finally, the SendBack
Command takes care of swapping the addresses and sending back
the packet through the physical port it came from.

Our implementation also catches the REG and REG-ACK pack-
ets to store the previously mentioned topic IDs, thus making our
solution entirely plug-and-play. The responsible FlowSelectors
and FlowProcessors are also simple and easy to understand. With
this extension, our solution is 150 lines of code with comments and
empty lines included. We can also imagine a template specifically
made for MQTT-SN traffic, thus enabling even simpler implemen-
tations.

5.2 Real-time data streams

Our second case study revolves around a service supporting real-
time data streams, as they for example appear in the context of
high-frequency trading where interested parties monitor market
events (e.g. buy and sell orders, executed transactions).

Specifically, we consider the ITCH application layer protocol pro-
vided by NASDAQ. ITCH messages are sent to the customer using
MoldUDP as a transport layer, which is similar to the original UDP
protocol but with a special payload structure. After the standard
UDP header, there are three additional fields: session (identifying
the stream), sequence number (the ID of the first message), and

message count (the number of messages included in the MoldUDP
packet). Finally, we find the message blocks consisting of two parts:
the length of the ITCH message and the ITCH message itself.

Clients can detect packet loss by observing the MoldUDP se-
quence numbers. In case of a loss, they can request the missing
messages from a different retransmission server. Our task is to
request retransmission automatically, thus saving time. A retrans-
mission request has the same structure as every MoldUDP packet
with a slightly different meaning: session, sequence number (the
ID of the first requested message), and message count (number of
consecutive messages requested).

In our implementation, we have created a FlowSelector for the
MoldUDP packets. The corresponding flow processor maintains a
SharedVariable containing the expected following sequence ID.
If the next ID is as expected, we simply update the desired next
ID using the “message count” field. Suppose the sequence ID is
higher than expected. In that case, we remove the message blocks
(using the TruncateRemainng command) and send back the packet
to a retransmission server and deliver the copy of the original
packet using the ClonePacket command. If the sequence number
is less than expected, then it is a retransmitted packet; if the packet
ordering retransmission was already requested, we do nothing.

We tested our solution using Python scripts mimicking the
MoldUDP protocol, and interestingly, the P4rrot based solution
has a similar length to the script mocking the client.

6 EVALUATION

6.1 Observability of the solutions

One of the main questions arising is the functional correctness of
the generated code. It is important to test if the generated code
works as expected, e.g., that the responses are indeed coming from
the switch or smartNIC and not from the host machine.

In the case of the MQTT-SN use case, we can quickly work
around the problem by introducing a slightly different payload indi-
cating the source of the emergency stop. The operational behavior
can be checked by analysing the packet traces captured by tcpdump.
Fig. 6 depicts that the packet carrying sensor values higher than the
threshold does not arrive at the host since the reply is generated
by the smartNIC.

MoldUDP offers less marking opportunities. Besides observing
the tcpdump logs, our client introduces an option to disable re-
transmission requests. Thanks to this option, every retransmission
request we observe must came from the activity of the smartNIC.
The performance measurements of Section 6.2 was performed this
way.

6.2 Response times

We compared the reaction time of the offloaded and the original non-
offloaded MoldUDP implementations. Our test MoldUDP server
sent out a packet in every second where each packet triggered a
retransmission request.

Fig. 7 depicts the observed response times on a 2x25GNetronome
smartNIC between two servers. We used tcpdump to capture the
relevant packets and iperf to generate background traffic. The of-
floaded solution requests retransmission faster. Moreover, it is less
affected even by the 10 Gbps background traffic. Our measurements
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Figure 6: Tcpdump before and after the P4-switch using BMv2. Packets are passing through up until the yellow pair because the

sensor value is below the threshold. After that point, the sensor packets are returned as alarm messages (red arrows).
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Figure 7: The observed response times on a 2x25GNetronome

smartNIC between two servers

confirm, that P4RROT-generated solutions can indeed take advan-
tage of offloading.

6.3 Code generator performance

The time required to run the code generator is negligible. It is a
fraction of a second since we do not run any heavy optimisations
or other complex algorithms. The generated P4 code is well-formed
and easy to read.

P4rrot can keep the flow of the processing logic together. Fig. 8
depicts a switch-case logic described in Python and the generated
P4 code using tables. The arrows show how the business logic gets
rearranged to fit P4’s abstractions. Implementing a switch-case
branching with a table instead of nested if-else statements can yield
a more efficient and less resource-intensive solution depending
on the target device. However, describing a piece of code in a ta-
ble fragments the flow of logic, thus tearing apart parts that the
programmer might wish to keep together.

We also analysed the code length required to describe the same
behaviour. The P4rrot description (Python3) was 54 non-empty
lines of code in the stock market data monitoring use case while 113

lines in the MQTT-SN use case. The total length of the P4 code was
343 and 382 lines, approximately three times more. After optimising
the generated parts, we can reduce these values to 330 and 337. If
we count only the automatically generated code parts by excluding
the template, we get 58 and 139 non-empty lines of code that can be
manually reduced to 45 and 94. These values are already satisfying.
However, we want to highlight that these targets and use cases do
not require excessive table usage, which could further increase the
usefulness of the code generator.

7 ADDITIONAL RELATEDWORK

Generating lower-level code for a specific use case from a high-level
language is a common theme for simplifying application develop-
ment and used in many contexts. For example, TensorFlow [1]
allows Python users to create computation graphs and run them on
GPU, and Keras [9] allows to define and use neural networks using
a simple API. A similar networking related example is MoonGen[4]
which facilitates performance measurements using DPDK and Lua.
However, these do not focus on P4.

We are also not the first to present a code generator which
outputs P4 code. For example, Graph-To-P4 [17] is a boilerplate
code generator for parser graphs. Also different packet filtering
solutions convert logical expressions (concerning application data)
to P4 code, such as CAMUS [6] and FastReact [16]. LUCID [15]
is an entirely new language meant to implement control plane
functionality in P4 data planes. However, these and other examples
[5, 8, 13] do not focus on offloading arbitrarily defined application
tasks. To best of our knowledge, we are the first to provide an
interface that is capable of describing general application-layer
features.

8 DISCUSSION AND FUTUREWORK

We presented a code generator, P4rrot, which allows to provide a
familiar and straightforward interface to the P4 programmer, hence
simplifying application offloading. P4rrot’s simple interface is
possible by narrowing down the scope to offloading application
functionalities. We note that our approach is not limited to the
Python language and the same design can be used for other high-
level languages, e.g. Java, C#.

While P4rrot can already be useful in its current form, our
project is still in an early stage. P4rrot is open source and we can
imagine even complex behaviors defined in tens of lines of code,
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( 

fp 

.add(SwitchTable(['x']))

    .Case([5])

        .add(AssignConst('y',7))

    .Case([9])

        .add(AssignConst('y',5))

    .Default()

        .add(AssignConst('y',9)) 

.EndSwitch()

)

...

 

action case_uid2(){ y = 7; }

action case_uid3(){ y = 5; }

action default_case_uid4(){ y = 9; }

 

table switch_uid5 {

    key  = { x: exact; }

    actions  = { case_uid2; case_uid3; default_case_uid4; NoAction;}

    const default_action = default_case_uid4;

    const entries = {

        ( 5 ) : case_uid2(); 

        ( 9 ) : case_uid3(); 

    }

}

 

...

 

apply{

    ...

    switch_uid5.apply()

    ...

}

 

Figure 8: A switch-case logic described in P4rrot (left) and the generated P4 code (right).

using bloom-filters, heaps, floating-point operations and other high-
level abstractions. We also plan to add extra functionalities to the
existing system, including a built-in way for the interaction between
the data plane and the non-offloaded server components.

Furthermore, our approach is not architecture-specific. Adding
new targets is easy since target-specific behavior is encapsulated
in separate objects and templates. Thanks to this encapsulation,
one can easily add new targets by providing templates and target-
specific Commands and SharedElements and reuse the core code
generator functionalities. From our experiences, TNA (Tofino Na-
tive Architecture) developers can greatly benefit from quickly switch-
ing implementation alternatives. Supporting the Tofino ASIC is
already a work in progress with promising results. In the case of
the support for BMv2 and Netronome smartNIC, we only experi-
enced minor workarounds because of minor technical differences
and bugs since both targets use the v1model as their architecture.

P4rrotmay also open a business opportunity for companies. We
can imagine scenarios in which the templates and some additional
extensions are proprietary and in which the end-users write python
scripts. After the code generation, the P4 code is automatically
compiled and loaded to the company’s device.
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