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Abstract—A new phenomenon called in-network computing
has recently emerged with the aim of offloading calculations
beyond the traditional task of packet forwarding to network
switches. One of the most studied in-network computing ap-
plications is processing of sensor data streams. Existing works
such as FastReact focus on solving this problem using flexible
SmartNICs. In this paper, we propose NETREACT: an improved
ASIC-oriented design for distributed event detection in sensor
data streams to achieve a disaggregated processing pipeline.
In contrast to existing approaches, NETREACT distributes the
event detection task among a set of switches while leveraging
the capabilities of the Intel Tofino platform in terms of boost-
ing throughput and reducing latency. The proposed event-rule
disaggregation method has the advantage of overcoming the
hardware resource constraints and improving the overall network
performance.

Index Terms—P4, in-network computing, pipeline disaggrega-
tion, event detection, sensor data processing

I. INTRODUCTION

Industrial Internet of Things (IoT) scenarios assume a large
number of sensors deployed, which sense the environment and
transmit a vast volume of data towards the cloud in order to
analyze and use it for feedback control. With recent advances
in edge computing, the latency of such a control loop can
significantly be reduced by deploying computational power
close to the industrial site since data packets do not need to be
shipped all the way to the cloud. However, the virtualization
techniques used by edge cloud platforms still introduce an
extra delay that is too high for real-time applications (e.g.,
emergency stop). Today’s setups often consist of very simple
sensors periodically sharing their current state (sensor value)
with a central controller (e.g., deployed in an edge cloud).
Ensuring a fast reaction to changes in the environment can
be achieved by sharing sensor values very frequently, e.g.,
in every 1-2ms. Flooding the network with packets might
overload both the network and the controller. Keeping only
the important packets (e.g., a value above a certain threshold)
alleviates this issue by filtering out the unnecessary network
traffic as early as possible.

Programmable packet processing pipelines have opened up
new opportunities for use-cases requiring ultra-low latency
and/or high-throughput by performing computations in the
data plane [1]. In 2014, a new programming language called
P4 [2] was released, making data plane programming much
more convenient. P4 became a widely-used programming lan-
guage supported by many different networking targets, includ-
ing software switches [3], SmartNICs, and even performance-

centric programmable switches such as the ones based on Intel
Tofino ASIC [4].

Prior work [5]–[7] demonstrated that programmable data
planes could offload real-time processing tasks and can provide
much faster response times than their server-based counter-
parts. In [6], Vestin et al. propose FastReact that moves
sensor data processing and event detection closer to the IoT
devices by moving parts of the data processing logic from
the industrial controller to the network data plane itself.
FastReact is an event-based publish/subscribe Industrial IoT
processing framework in P4 language, which can be flexibly
customized from the control plane in run-time. Together with
stateful processing, it supports windowed time series analysis
as well as complex event detection and processing based on
Boolean logic directly in the data plane of newly emerging
programmable networking devices. The logic can be adjusted
dynamically from the control plane without the need for
recompilation. FastReact achieves significantly lower control
latency compared to end-host processing in software while
also capable of handling publish-subscribe scenarios which
are common to Industrial-IoT protocol stacks.

Though FastReact was also implemented in P4, it was
originally designed for the architecture of a specific smartNIC
where register operations can be used without any restrictions,
making the portability of this design to a programmable ASIC
simply impossible. In addition, FastReact was proposed to be
used on a single node, solely solving the event detection by a
single P4-programmable device. However, different P4 targets
have various limitations on the complexity (e.g., SRAM and
TCAM usage, number of stages, processing latency, etc.) they
are able to handle.

In this paper, we propose NETREACT that addresses
the above limitations of FastReact while keeping its event-
detection capabilities. Our main contributions are the follow-
ing:

• Keeping the idea of FastReact that an event is represented
as a logical expression in conjunctive normal form, we
have fully redesigned the data plane algorithm so that it
could be executed on Intel Tofino ASIC. The proposed
ASIC-oriented pipeline exploits the advantage of match-
action tables for storing event-detection rules and only
uses stateful registers for storing sensor data and partial
evaluation results.

• We also provide an algorithm that can disaggregate log-
ical rules and distribute the event-detection task among
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multiple P4 devices. In NETREACT, event detection is
solved by the network instead of a single node.

• We show the performance limits of NETREACT on a
single node and investigate how rule disaggregation can
increase performance and help in overcoming potential
resource limitations.

• As a contribution to the community, the source code is
available at https://github.com/p4elte/netreact.

II. RELATED WORK

Yu et al. [8] provide a summary on the exhaustive literature
of event detection in general.

Singh et al. [9] investigate machine learning-based solutions
for distributed forest fire detection in wireless sensor networks
(WSN) where computations of their machine learning algo-
rithm are distributed among selected WSN nodes called cluster
heads. Though this method has not been implemented in the
data plane, its general idea is similar to NETREACT.

In addition to FastReact [6] mentioned in the previous
section, implementing event detection in P4 data planes has
already been investigated in several papers. Though their goals
are similar, the different proposals have their own advantages
and limitations.

Kohler et al. [5] moves the traditional CEP (Complex
Event Processing) implementation on servers to the in-network
computing paradigm. They propose timed sequenced events
using a sliding window restriction, enabling events detection
by state-machine logic using stateful packet processing. They
also introduce a compiler that translates the P4CEP rules
language to the adjacent P4 code deploying it on SmartNIC.

In [10], the authors provide two methods to enable at-
tribute/value pairs encoding flexibility in a dynamic environ-
ment placing the focus on values of specific events in the
content-based subscription model.

Combining controlled latency methods of distributed stream
processing applications into a heterogeneous system has been
addressed in [11]. The authors partition the latency frame
restriction over control units and compose an ILP, in addition,
to a heuristic as solutions for an optimal low latency- minimal
cost problem distribution.

Mai et al. in [12] design an in-network computing-based ar-
chitecture to complement mobile edge computing, identifying
the tasks to migrate to programmable switches. The switches
perform matching of the rules by integrating the CEP tool
to do the conversion of the tasks and leaving the learning
and updating of the rules as the responsibility of mobile
edge computing layer. The authors implemented in-network
fire detection and robotic motion control to demonstrate their
architecture.

COMUS method [7] is a new network architecture design
for an efficient pub/sub communication model. The authors
introduce a packet subscription language and a compiler to
produce the data and control plane configuration utilizing a
BDDs algorithm, which saves up the limited resources of the
programmable switch ASIC. They also describe a controller

to decide on the routing policy depending on filters put in a
packet subscription language provided by applications.

III. FILTERING ON TOFINO

A. Introduction to FastReact

The FastReact system, which provides the base idea for
NETREACT, was initially designed to run on Netronome
NFP. Since our Tofino-based implementation is built on its
operational principle, we briefly introduce FastReact.

As NETREACT, FastReact treats the filtering rules as logical
expressions in conjunctive normal form (CNF). These expres-
sions consist of atomic predicates concatenated with disjunc-
tion operators, forming clauses connected with conjunctions.
FastReact stores CNF rules to be evaluated in a hierarchy
of register arrays. It also provides in-network caching in the
form of storing historical and aggregated values. Finally, it can
handle arbitrary packet structure with two restrictions: 1) the
structure has to be known before the compilation of the P4
code and 2) each packet can only carry a single (sensor) value
to be used in the filtering expressions.

B. Differences Between P4 Targets

Although many devices can execute P4 programs, they
support various externs (built-in functionalities) and have their
own constraints, making the portability of P4 code difficult
or even impossible without deep modifications. The initial
FastReact implementation was designed for a Netronome
SmartNIC (NFP), while NETREACT targets Intel Tofino-based
switches (TNA). We briefly summarize the key differences
between the two platforms in the following paragraphs.

NFP has a hard limit of 256 for the number of match-action
tables and actions, while the use of tables is encouraged on the
Tofino for more efficient implementations and workarounds.

The registers of the NFP act as global variables allowing
multiple reads and writes during the processing of a single
packet. However, the TNA poses more strict requirements. One
may access a register only once during the packet processing.
(Although recirculation and resubmit could grant multiple
opportunities, they also introduce concurrency and consistency
issues.)

The Tofino switch has stage-based processing acting like a
one-way assembly line where the maximum number of stages
is limited. In contrast, the Netronome SmartNIC has a more
flexible island-based internal operation.

Due to the previously mentioned differences and some
additional constraints, implementing the FastReact on Tofino
requires substantial design efforts in order to take advantage
of its line-rate high throughput. In particular, FastReact has
a heavy register usage and avoids match-action tables. In
contrast, NETREACT primarily relies on tables, and when it
uses registers, it can access them only once and in the same
order during packet processing.

C. System Design

The available operators in the atomic predicates are: greater
than, smaller than, equal, not equal, and in-range. We use the
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Fig. 1. Expression representation in NETREACT’s data plane.

same sensor data format as FastReact, assuming a UDP packet
containing the sensor ID and the sensor value.

The initial step of the pipeline (as can be seen in Figure 3)
is to decide whether the incoming packet is a sensor packet
or other traffic. In the latter case, we can perform some other
tasks, e.g. L2 forwarding.

If it is a sensor packet, the adequate rule’s id (Clause ID),
the needed operators and numerical values are read from the
match-action tables. Later, this Clause ID is used as a register
index to store partial results of the evaluation. The number of
tables and registers involved equals the maximum number of
clauses in a rule. Thus if the maximal number of clauses in a
rule is n, we need n conjunction tables, each providing one
or zero clauses for each sensor.

The data plane representation of a single condition can be
seen in Figure 1. Each clause is stored as a discrete entry in the
conjunction tables containing a Clause ID, the operation to be
performed and the optional operands. (For technical reasons,
it is possible not to perform any operation, just use the stored
results). The clauses are accessed via the Sensor ID, using
exact matching.

A preparation step precedes the evaluation of the clauses.
We subtract every sensor value from the value we would like
to compare it. This way, we can get a Boolean value simply by
checking the sign of the result, which fits the Tofino’s match-
action table structure much better than the direct comparison
of two variables. When the required operation is in-range, two
subtractions are needed, leading to two results that must be
evaluated (essentially, we reduce it to a greater than and a
less than operation).

Since most use cases require the value of multiple sensor
values, we need to store the results of all the clauses processed
on the device. As mentioned before, this is done by storing
32 long bitmaps in registers. Keeping only the Boolean result
of each clause means that a clause using some sensor value a
can only appear in rules that do not filter a if the same clause
appears in a rule that filters a.

When a new Boolean value is computed, the result is stored
in a bitmap variable where each bit represents the current state

sensor d sensor asensor e sensor c sensor bsensor f sensor g

     

  

The original rules
Filtering rule for a,c:

Filtering rule for b:

Filtering rule for d,e:

Fig. 2. Example placement of following sensors and their filtering rules:
a, c : (a > 12 ∨ c < 20) ∧ (c 6= 10 ∨ a = 1); b : (b ∈ [20, 60]) ∧ (a >
12 ∨ c < 20); d, e : (d = 10 ∨ g > 60) ∧ (e 6= 10 ∨ f < 60)

of a given clause. To this end, the method applies a lookup
table matching the computed Boolean value, sensor ID and
the Clause ID. The latter identifies the bit position carrying the
result in a temporary bitmap. Then it is merged with the stored
values by applying logical AND/OR on it, and the appropriate
map is stored in the register (indexed with the Clause ID). The
new maps are both stored in registers and used to determine
whether the CNF, as a whole, is true or false. Because of this
kind of merging, we can use each sensor only once in a clause.

Besides its primary filtering function, our implementation
maintains a configurable sized history. It uses multiple regis-
ters similarly to a queue. Moreover, tracking a moving average
for each sensor value is also possible. These are not depicted
in Figure 3 since they are not part of the main functionality
and would clutter the flowchart.

IV. DISAGGREGATION OF THE FILTERING EXPRESSIONS

A. Motivation

Being able to disaggregate the filtering expressions across
multiple switches allows us to circumvent the resource lim-
itations inherent in all network devices. A well-thought-out
rule placement can help filter out packets that do not carry
interesting information early, thus reducing the network’s
overall traffic. To simplify our work, in the following, we
assume a tree-topology.

We slice the expressions into clauses to spread the filtering
across multiple devices. These can be potentially evaluated on
different nodes. However, we must ensure that the distributed
and centralized setup yields the same overall results.

Let us consider the example provided by Figure 2 that
presents a correct disaggregation of the rules. However, if we
move the (a > 12 ∨ c < 20) to the root node, the filtering
would become inconsistent. Supposing that we drop an a
sensor packet, because of the c 6= 10 ∨ a = 1, the value
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Get conj ids, disj
operators and disj values

from conj table

Subtract sensor values
from disj values

Evaluate subtracted
values according to disj

operators

Create new maps
containing the calculated

result

AND/OR new maps to
the stored map

Summarize all the maps
and decide whether the

expression is true

need range 
match

False

Subtract sensor value
from upper bound

True

Is it a sensor
packet?

True

Perform some other
function

False

Forward/Drop the packet
based on the result

packet holds
relevant

information

TrueFalse

Fig. 3. Simplified NETREACT flowchart

of logical expression a > 12 in the root can not be updated
in this case.

B. Formal requirement

In order to ensure the consistency of our system, we
define the ”do not drop packets too early” requirement for
a disaggregation as follows:

∀c ∈ Conj, ∀x ∈ M(c),∀y ∈ C(c) : x ↗ y (1)

Where M(c) is the sensor value variables the conjunction
containing the clause filters (matches), Conj is the set of
conjunctive clauses and C(c) is the set of sensor value
variables the clause contains. x ↗ y means that the evaluation
of clauses containing x has to precede the evaluation of clauses
containing y, or it has to be at the same node as the clauses
of y. Figure 4 illustrates the notation.

To give a formal solution to this problem, we treat the
system of conjunctions as a directed graph. The graph’s
vertices are the sets of clauses. The edges between the vertices
define the order in which the clauses are meant to be evaluated.

Finding the strongly connected components yields us the parts
to be moved together and the dependencies between them.
Figure 5 depicts how clauses in a graph could form strong
components.

Contained sensors 

Matched sensors

Fig. 4. An example rule. Conjunction k filters the a and b sensor values. We
indicate the elements of M(k) and C(k).

Matches: f

Matches: a,b Matches: a,b

Matches: a,c Matches: d,e

Matches: a,d,e

Fig. 5. Strong components and filtering expressions for sensors: b : (b < 5)∧
(a > 10); a, c : (a > 10)∧ (e > 16)∧ (c > 10); d, e : (d < 7)∧ (e > 16)

C. Limitations and workarounds

The way our pipeline is structured comes with some lim-
itations regarding the disaggregation of filtering expressions.
Namely, each clause is evaluated only when the switch running
our code gets a packet containing sensor data which is both
used in the clause and also matched on it (x ∈ M(c)). For
example, if the clause (a > 10) is only used for matching
packets generated by sensor b, this clause’s value will never be
calculated since it relies on values of sensor a. This limitation,
in most cases, can be circumvented by adding extra clauses to
rules that match the target sensor value.

V. EVALUATION AND DISCUSSION

A. Data Plane
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Fig. 6. Resource usage based on the complexity of expressions
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We implemented NETREACT in P4 using the Intel Tofino’s
architecture. Instantiating NETREACT with the highest pos-
sible complexity of the CNFs (at most 9 clauses) occupies
all the available stages, 30.1% of the available SRAM, 9.4%
of the available TCAM and 29.2% of the available ALU
resources on average. Figure 6 shows how resource usage
changes with the increased complexity of filtering rules. Since
our implementation does not resubmit or recirculate packets,
we claim that low-latency and high throughput are guaranteed
by the high-speed Tofino hardware.

We have also compared NETREACT to COMUS [7] since
their designs show similarities despite the fact that COMUS
has been designed to deal with packet subscriptions while our
goal is the filtering of sensor packets. However, in contrast the
CNF used by our NETREACT, COMUS relies on disjunctive
normal form (DNF) to represent its rules. Another important
difference is that NETREACT heavily relies on the usage of
SRAM, while the default algorithm of COMUS needs more
TCAM entries. Because of this, COMUS might need O(n)
table entries to represent a single comparison where n is the
bit length of sensor value fields, while NETREACT requires
only one or two (for in range conditions). For the sake of a
fair comparison, we have to note that COMUS provides more
functionality than NETREACT in exchange for higher resource
usage, and it also introduces additional mechanisms to reduce
the required TCAM space.

Finally, another advantage of NETREACT is that the ma-
jority of its pipeline can be executed at the egress side, and
thus it does not affect the deployment with co-locating other
network functions at ingress.

B. Disaggregation

NETREACT can handle CNF expressions with at most 9
clauses on a single device. Since the expressions can be
disaggregated, each additional device increments the total
number of deployable clauses by 9 clauses if the rules are
properly sliceable.

Since this disaggregation method does not require any
changes in the initial FastReact protocol, it is also possi-
ble to mix devices running either FastReact or NETREACT,
allowing the creation of systems with heterogeneous data
plane solutions. The graph representation of the disaggregation
provides a basis for future work. One can build different
tree-like network topology to maximize the positive effects
of disaggregation, also considering the case of dynamically
updating the network structure [13]. In this paper, we have
only focused on providing a disaggregation of logical rules that
correctly filters out traffic in case of an ideal topology. As part
of our future work, we aim to extend the proposed method to
consider additional constraints such as given topology, event
occasions with different probabilities and hardware limitations,
and find the optimal placement/distribution of rules in the
presence of such constraints.

VI. CONCLUSION

We have presented NETREACT, a Tofino-friendly imple-
mentation of event detection pipiline inspired by FastReact. It
leverages the line-rate high throughput of programmable ASIC
in exchange for certain limitations.Moreover, we provided
a method to disaggregate filtering rules based on a graph
representation and strongly connected components. This model
provides a strong basis for our future work.
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