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Abstract—The localization of Internet hosts opens space for a
wide scope of applications, from targeted, location aware content
provision to localizing illegal content. In this paper we present a
novel probabilistic approach, called Spotter, for estimating the ge-
ographic position of Internet devices with remarkable precision.
While the existing methods use landmark specific calibration for
building their internal models we show that the delay-distance
data follow a generic distribution for each landmark. Hence,
instead of describing the delay-distance space in a landmark
specific manner our proposed method handles all the calibration
points together and derives a common delay-distance model.
This fundamental discovery indicates that, in contrast to prior
techniques, Spotter is less prone to measurement errors and
other anomalies such as indirect routing. To demonstrate the
robustness and the accuracy of Spotter we test the performance
on PlanetLab nodes as well as on a more realistic reference
set collected by CAIDA explicitly for geolocation comparison
purposes. To the best of our knowledge, we are the first to use
this novel ground truth containing over 23000 network routers
with their geographic locations.

I. INTRODUCTION

Since the last decade many location aware applications have

been appearing from content localization to targeted advertise-

ments. Furthermore most of the online services could benefit

from determining the geographic locations of their users.

Besides the commercial utilization, the IP localization became

important in network research and development as well, e.g. to

visualize the results of Internet measurements, investigate the

geographic aspects of various important problems like network

topology, policy routing and pricing strategies. In addition, it

opens space for a wider scope of applications, from targeted,

location aware content provision to fraud detection.

Nevertheless, determining geographical location of Internet

hosts by a single IP address poses many challenges, since

there is no direct relationship between the IP address of

a network device and its geographic location. Most of the

existing geolocation services are based on databases which

store organizational information assigned to IP domains, or

try to infer location information from DNS names. Usually

the accuracy of these services is insufficient due to the lack

of reliable information. To overcome the uncertainty of these

registry based approaches, active geolocation techniques have

emerged [1]–[3]. These methods attempt to approximate the

geographic distance based on delay and topology measure-

ments and then use triangulation-like methods to obtain the

geographical location of Internet hosts. Most of them introduce

strict geographical constraints which determine a region in

which the target should be located with equal probabilities.

This paper presents a probabilistic geolocation approach,

called Spotter, which based on the detailed statistical analysis

of the relationship between network delay and geographic

distance. This analysis reveals that the distribution of spatial

distances for a given delay follows a common distribution

and is independent of the landmark’s position from where

the measurement was performed. While the state-of-the-art

techniques use separate calibration data for each landmark to

determine their internal models, our method handles all these

data together to derive a generic delay-distance model. By

exploiting the benefits of this fundamental discovery our novel

probabilistic approach is less prone to measurement errors and

other network anomalies affecting the distance approximation.

In addition, for a given target Spotter returns not only the

estimated coordinates, but also a spatial probability surface

describing how likely the target is at given regions of the globe.

To demonstrate the robustness and the accuracy of Spotter

we test the performance on PlanetLab nodes as well as on

a more realistic reference set collected by CAIDA [4] for

the purposes of a geolocation comparison survey. The latest

set contains more than 23000 distinct network interfaces with

reliable location information. Our performance analysis shows

that on both ground truth data sets Spotter provides location

estimations with outstanding accuracy compared to the non-

probabilistic models of the state-of-the-art techniques, CBG

[2] and Octant [3].

To manifest the applicability of our probabilistic approach

we developed a publicly available geolocation service1 [5].

In contrast to the prior works, our solution is based on a

fundamentally different principle and combines the benefits of

active measurements by applying a novel probabilistic model

for presenting a reliable and accurate geolocation service.

The rest of the paper is organized as follows: in Section II

we briefly overview the available geolocation approaches

from commercial services to advanced active geolocation

techniques. Section III delineates the theoretical background

of our probabilistic geolocation methodology. In Section IV

we present a detailed statistical analysis of the relationship

between network delay and geographic distance and show

the generality of the delay-distance distribution. Besides this,

we examine the accuracy of location estimations using two

different reference data sets as geolocation ground truth. The

online geolocation service built upon our probabilistic model

is briefly introduced in Section V. To demonstrate the power

1The SPOTTER website: http://spotter.etomic.org
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of Spotter we outline some large scale localization scenarios

in Section VI, while the final section summarizes our results.

II. STATE OF THE ART

During the recent years several geolocation techniques have

emerged, all of them aim to give an accurate approximation of

the location of network hosts which are not known a priori.

The different approaches can be classified into two groups

depending on their underlying methodology to collect location

information. One set of methods uses previously registered

data to gain information on the geographic location of IP ad-

dresses. We refer to these as registry based approaches. Other

techniques utilize active delay and topology measurements to

approximate IP locations. We call them measurement based

approaches.

A. Registry Based Geolocation

Many of the existing geolocation techniques use Whois
databases, DNS LOC records or DNS names [6] to determine

the location of a given host. From Whois databases one

can retrieve the name and street address of the organization

which registered the address block. However, for a large

ISP or a geographically dispersed organization the registered

street address usually differs from the real location of its

hosts. A similar problem arises in the use of DNS names,

since the names can be both useful or misleading due to

the naming conventions of the ISP [7]. Other registry based

techniques include commercial approaches, e.g. the gathering

of user submitted location data from commercial websites, or

network reconnaissance, where one obtains the description of

the geographic layout of an ISP’s network and internal routing

policies.

In general we can say that registry based methods can

provide very accurate location approximations, however in

many cases their errors are very large for entire blocks of

IP addresses [8]. This feature is due to the fact that their

precision greatly depends on the resolution and reliability of

the previously registered data they use.

To illustrate the problem we have queried whois.arin.net

to collect locations for IP addresses assigned to Google Inc.

According to the Whois query, 99.7% of the IPs are located

in Mountain View, California, where Google’s headquarters

can be found. As Table I shows, only 537 IP addresses out of

the total 222877 are located in 12 other cities. To investigate

the reliability of this result we have selected 4000 addresses

from the Google domain and measured delays to them from the

PlanetLab node at Universidad Publica de Navarra, Pamplona,

Spain. Assuming an ideal case where the signal propagation

speed is 200000 km/sec, for all the 4000 IPs we can determine

the maximal physically possible distance from Pamplona.

In Figure 1 we present the cumulative distribution of these

maximal distances and also indicate the distance between

Pamplona and Mounatin View. The plot shows that 47% of

the examined hosts have maximal distance below the real

Pamplona-Mounatin View distance and therefore, in principle

these nodes cannot reside in Mountain View.

Table I
LOCATIONS OF NORTH AMERICAN IPV4 ADDRESSES ASSIGNED TO

GOOGLE INC.

Registered location number of distinct IPv4 address

Mountain View, CA, US 222340

Plano, TX, US 331

Chicago, IL, US 46

Irvine, CA, US 30

Waterloo, ON, CA 22

San Francisco, CA, US 21

Atlanta, GA, US 15

Phoenix, AZ, US 15

Southfield, MI, US 15

Mequon, WI, US 14

Pittsburgh, PA, US 14

Gladwyne, PA, US 7

Richardson, TX, US 7

Total 222877
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Figure 1. Cumulative distribution of the maximal distances from Pamplona,
Spain to 4000 Google IPs. The maximal distances are calculated from the
network delays assuming 200000 km/sec signal propagation speed. The
vertical line represents the real geographical distance between Pamplona and
Mountain View, CA, showing that 47% of the nodes must be closer to
Pamplona than Mountain View.

B. Measurement Based Geolocation

Some other proposals apply a different approach and uti-

lize active measurements to overcome the above limitations.

IP2Geo [6] contains a tool called Geoping, which tries

to approximate the geographical location of network hosts

on the basis of packet delay measurements. A more mature

approach is the simultaneous application of several delay

constraints to infer the location of a network host. This is

done by constraint-based-geolocation (CBG) techniques [2].

CBG introduces a triangulation-like method to combine the

distance estimates from all landmarks. To estimate delay-

distance relation, each landmark measures the delay from itself

to all the others. From these inter-landmark measurements CBG
can be calibrated by data fitting [2]. In general, each delay

measurement defines a circle around the landmark from where

the delay was measured. The possible locations of the target

node are determined by intersecting all of these circles. In most
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of the cases this intersection produces a region in which the

target node must be located. In [1] the authors extend the CBG

with novel end-to-end path constraints and apply a detailed

latency model for the better approximation of geographic

distances. By this the localization accuracy is significantly

improved for intermediate routers, but for arbitrary network

hosts the applicability is limited.

Another technique is where the topology information and

latency measurements are used together in the location esti-

mation. This method type is called topology based geolocation

(TBG) [9]. TBG localizes all the intermediate routers between

the landmarks and the target node. This approach is based

on link-latency estimations and on precise topology discovery.

The basic tools of this method are traceroute and interface

clustering applications. Later works such as Octant [3] enhance

the accuracy of location approximations by combining TBG
with various other techniques, including DNS and Whois
lookups or clipping regions with negative geographic and

demographic constraints.

C. Geolocation Services

As IP geolocation gained importance in the last decade,

various services have emerged to provide such information. To

answer IP location queries nearly all of today’s well known ge-

olocation services2 maintain a repository that stores previously

collected geodata. Most providers use registry based methods

to build up their location database. Naturally, many providers

apply further refinements on raw registry based data, and tend

to use a wider variety of data sources. For instance, MaxMind

[11] and Digital Envoy Netacuity [12] collect geographic

information from partner websites where users enter their

location [10], or Quova [13] purchases internal routing data

directly from ISPs [14].

Although larger providers apply different validation tech-

niques, the error patterns of the base registry data cannot

be fully eliminated. To demonstrate the imperfection of the

data cleaning algorithms, we have localized five randomly

selected GÉANT routers with known positions spread across

Europe using MaxMind. We found that MaxMind located all

of the routers in Cambridge, UK, where the GÉANT operator is

registered. This mislocation indicates that MaxMind relies on

previously registered Whois data, which leads to unreliable

results in this case. A recent study of geolocation databases

[10] shows that similar anomalies are present in other well

known geolocation services as well.

Measurement based geolocation tools mostly emerge from

universities and research institutes. Usually these tools do not

provide a service interface to query IP addresses at all, and

even if they do so, it is usually suitable for demonstration

purposes only. The absence of reliable measurement based

geolocation services sets back many research and application

scenarios where the geographic position of an Internet host

has a significant role. In the following we introduce a novel

probabilistic geolocation model and a service built on top of

that to fill this gap.

2See [10] for a list of popular services.

III. THEORETICAL BACKGROUND

In the typical scenario of measurement based geolocation

we have landmark nodes with known geographic location and

a target node without known position. To approximate the

location of the target we measure propagation delays from

the landmarks to the target, and then convert the delays into

geographic distances based on a delay-distance model. The

resulting set of distance constraints is used to determine the

target’s estimated location with a triangulation-like method.

The heart of this process is the delay-distance model, which

we introduce in detail in the following.

A. Probabilistic Delay-Distance Model

We developed a probabilistic model to determine the most

likely position of the target based on signal propagation delay

values between the landmarks and the target. To approach the

problem, we first examine the case where we have only one

landmark. Let L denote the landmark given by its latitude and

longitude coordinates:

L = (Llat, Llng).

Let T represent the target node, whose actual T = (Tlat, Tlng)

coordinates are unknown.3 In the following we describe the

target’s position with a random variable τ :

τ = (τlat, τlng).

The spatial probability density function of τ determines how

likely the target is at given regions of the globe. In our

approach the density function depends on the location of the

landmark and the signal propagation delay between L and T .

For a given L and a fixed delay d we denote this function by

gL

d
(τ). With this notation the conditional probability that T

falls into region H is provided by

P (T ∈ H|L ⊲⊳ d) =

∫

H

gL

d
(τ)dτ, (1)

where the condition L ⊲⊳ d indicates that the propagation

delay between L and T is d. As delay measurements do

not carry any information on the bearing from L to T , we

can derive constraints only on their distance. Hence, in our

mathematical construction we assume an isotropic behavior

where the distance probabilities are equal in all geographic

directions from L, for a given d. Hence, gL

d
defines a ring-like

surface around the landmark.

B. Location Approximation

Due to the isotropic nature of (1) a single probability surface

does not provide a well-defined location for the target. To

enable definite estimations we extend the construction for

multiple landmarks and consider the resulting spatial density

distributions jointly to maximize the probability of the loca-

tion.

3Note that while L and T represent the nodes themselves, the boldface L

and T stand for their coordinates.
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(a) Probability density surfaces (b) Estimated region

Figure 2. Target localization from three landmarks. (a) The sum of the probability density surfaces for three landmarks illustrates the ring-like structure of
the individual spatial densities. The locations denoted by green color are less probable than the red ones where the three rings meet. (b) The previous three
density functions are shown in gray scale. The joint probability surface calculated by (2) are displayed in pink, while the region with red color illustrates the
estimated region for a given confidence level.

Let us suppose we have n landmarks: L1, . . . , Ln. Let

di denote the propagation delay from Li to T and gLi

di
(τ)

represent the corresponding spatial probability densities. The

conditional probability that the target is located in a certain H
region can be expressed as the product of the distinct densities:

P (T ∈ H|L1 ⊲⊳ d1, . . . , Ln ⊲⊳ dn) =

= AH

n
∏

i=1

P (T ∈ H|Li ⊲⊳ di) =

= AH

n
∏

i=1

∫

H

gLi

di
(τ)dτ . (2)

Here AH = P (T ∈ H)1−n where P (T ∈ H) stands

for the unconditional probability that T resides in H . This

expression presumes that the delays measured from different

landmarks are statistically independent. Although this condi-

tion is not automatically ensured, the geographically dispersed

distribution of landmarks and a careful landmark selection

method together reduce the dependence of the measurements.

If we have prior assumptions on the possible locations of the

target, then the distribution of P (T ∈ H) might convey this

information. For instance, population density data or various

geographic constraints can be coded into P (T ∈ H). In

the following we do not apply such assumptions, but rather

suppose that P (T ∈ H) is uniformly distributed. Hence, AH

solely depends on the area of H and can be substituted with

a constant for all regions having the same area.

The basic principle of our localization method is that the

estimated position must fall into the region designated by

the gLi

di
functions such that the joint probability in (2) is

maximized for a reasonably sized region H . To illustrate the

concept in Figure 2(a) we plotted the gLi

di
probability densities

for three landmark nodes. For the sake of demonstration the

joint region of the rings are visualized by the sum of the

distinct probability values instead of applying the product in

(2). On the contrary, Figure 2(b) shows the valid calculation

according to (2) for the same densities.

To determine the spatial probability density of τ we divide

the surface of the globe into a finite number of cells with equal

size and calculate (2) over them (see Section V-A for details).

This way we obtain a probability value for each cell, which is

a much finer information on the possible position of the target

than previous localization methods could provide. To deliver

position estimations from the individual cell probabilities we

can apply one of the following methods.

In case an estimated region of the target is needed, we can

define the union of the most probable cells according to a re-

quired confidence level. The estimated region for two different

confidence levels are indicated with colors in Figure 2(b). One

can observe that the regions emerge where all the involved

rings provide high probability values. Estimating the target

location with a region might be useful in the visualization

of results of large scale host localization (see Section VI for

examples).

On the other hand, for certain purposes an estimated region

is not appropriate, instead a single “best” target location value

is necessary. Due to the nature of our probabilistic approach

there are several choices to define a single location. For

instance, one can simply select the center of the estimated

region or use the coordinates corresponding to the maximum

or mean value of the probability distribution.

IV. DETERMINING THE SPATIAL DENSITY FUNCTIONS

To be able to apply the previous theoretical results we need

to infer the gL

d
probability densities. For this we make two

natural assumptions. First, we suppose that gL

d
is isotropic,

since we have no reason to doubt that signal propagation

characteristics agree in different geographical directions. This

hypothesis implicitly appears in most of the previous geolo-

cation works, including [2], [3], [9], [15]. As a consequence,

we can describe gL

d
with its fL

d
radial profile. Essentially, fL

d

is a one dimensional distance distribution for L and d.
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Second, in contrast to prior works of Wong et al. [3] or

Eriksson et al. [15] we expect that the fL

d
distribution is

independent of the actual location of L, and thus it can be

substituted with an fd distance distribution common for all

landmarks. This fundamental step will be discussed later in

the section, since it has a serious impact on the quality of

calibration.

A. Approximating the Radial Profile

To benefit from the previous two assumptions, instead of

determining gL

d
itself, we approximate the fd common distance

distribution. This is done by a thorough analysis of real world

calibration data collected in PlanetLab. Figure 3(a) presents the

gathered 40000 data points. Each dot represents the measured

round-trip delay value and the distance between a PlanetLab

node pair. The great circle distance is calculated from the

known coordinates of the PlanetLab nodes.

To understand the nature of the calibration data set we

determined the probability distribution of the standardized data

values. As presented in Figure 3(b) there is a good match

with the standard normal distribution (the fitting parameters

are µ = −0.078, σ = 1.035). This feature indicates that fd

is well approximated by a normal distribution at any fixed d
delay. To characterize the mean and variance of fd, we fitted

the µ(d) and σ(d) polynomials to the data set. These curves

are also shown in Figure 3(a). The above observations enable

a simple but consistent approximation of fd with a normal

distribution:

fd(s) ≈
1√

2π·σ(d)
· exp

(

− (s − µ(d))
2

2σ2(d)

)

, (3)

where s is a random variable describing the distance. During

the evaluation process the (3) distance distribution is used to

calculate the gL

d
(τ) spatial probability densities. For a given

L ⊲⊳ d this is done by the following formula:

gL

d
(τ) = Ad · fd(S(L, τ)). (4)

Here, S(L, τ) represents the great-circle distance between L
and τ , while Ad denotes the normalization factor.

B. The Generality of the Delay-Distance Distribution

Now, we revisit our prior assumption and argue that the

individual landmarks have a generic underlying delay-distance

behavior. To investigate the validity of the hypothesis we check

if delay-distance data corresponding to individual landmarks

follow the distribution of the overall data set presented in

Figure 3(a). This test is done by means of Q-Q plot. Ac-

cording to the standard notations the standardized values of

the landmark specific data are called observed values, while

we refer to the standardized values of the overall data set as

expected values. In Figure 3(c) we present the Q-Q plot where

the corresponding quantiles of the observed and the expected

values are plotted against each other. For a better visibility,

only the data for five selected landmarks are shown which are

considered to represent the whole landmark set well. The good

match with the diagonal indicates that the expected and the

observed values follow the same delay-distance distribution.

Consequently, the soundness of our original assumption is

verified.

This conclusion gains importance during the empirical cali-

bration of delay-distance models. Currently, some hundreds of

ground truth locations are publicly available, most of which

belong to PlanetLab. The number of reachable ground truth

positions determines the size of the calibration data set. To

infer landmark specific delay models the overall calibration set

has to be divided into significantly smaller landmark specific

chunks. These smaller data sets contain only a few hundred

points (as many as the number of known ground truth posi-

tions). Due to the small sample size it is technically infeasible

to infer reliable landmark specific delay models. Accordingly,

geolocation approaches using landmark specific calibration

might suffer from inconsistent location approximation.

As a novelty, we use the overall calibration set to determine

a common delay-distance model for all the landmarks. In

contrast to landmark specific calibration this can be done with

sufficient accuracy and resolution which eventually provides

consistent geographic constraints across the landmarks.

C. Performance Analysis

We examine the localization accuracy of our approach and

compare the results with the performance of the state-of-

the-art delay models of CBG and Octant. As discussed in

Section II CBG determines a flat disk around each landmark

in which the target node should be located. To derive the disk

around a landmark CBG uses the tightest line fit above delay-

distance pairs. For more details see [2]. In contrast to CBG,

Octant generates flat rings around the landmarks to describe

the possible locations of the target [3]. To this end, Octant

combines passive and active techniques in order to define

positive and negative geographical constraints.

To enable performance comparison we have reimplemented

the delay models behind CBG and Octant according to [2]

and [3]. Since we focus solely on the performance of delay

models we did not reproduce all the features of the original

frameworks.

To examine the accuracy of the three geolocalization meth-

ods we use two different reference data sets as geolocation

ground truth. First we apply the methods on the PLANETLAB
set containing the PlanetLab nodes as reference targets, since

their geographical positions are well known. This reference set

is widely used in the geolocation literature both for calibration

and validation purposes. We follow the common verification

scenario where every PlanetLab node is selected as a target and

then geolocalized using all the remaining nodes as landmarks.

To determine the localization errors we calculate the great-

circle distance between the estimated and the actual coor-

dinates. The upper row of Figure 4 shows the cumulative

distribution of the localization errors of Spotter, CBG and

Octant models on these targets.

For all regions 13%, 10% and 3% of the hosts have less

then 10 km error with Spotter, Octant and CBG, respectively.

The 50 km range includes the 35%, 26% and 23% of the
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(a) Delay-distance plot, where each dot represents
a measurement between two PlanetLab nodes. The
fitted µ(d) mean and σ(d) standard deviation
curves are shown.
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(c) Q-Q plot for five selected landmarks shows
that the individual landmarks follow the same
normal distribution.

Figure 3. Fundamental observations on the delay data collected between the PlanetLab node pairs.

hosts. The median errors produced by the methods on the

full set are 75, 125 and 175 km. These numbers show

that the probabilistic approach outperforms the flat models.

Nevertheless, the applicability of this verification scenario is

limited, since all the models are validated on the very same

environment as they were calibrated on previously.

To investigate the methods in a more realistic scenario we

use a more representative data set collected by CAIDA [4]

for the purpose of a geolocation comparison survey. This set

is independent of the geolocation models in the sense that

it was not involved in their calibration process. This data set

contains more than 23000 distinct IP addresses geographically

distributed across North America and Europe. These IPs

belong to network routers of Cogent, a large Tier-1 ISP. We

refer to this data set as COGENT.

The cumulative distribution of localization errors on the

COGENT set are presented in the lower row of Figure 4. One

can observe that Spotter has outstanding accuracy compared

to Octant and CBG. 35% of the North American nodes are

localized within 10 km error, while Octant and CBG have

only 2% and 9% of the estimates within the same range. For

our approach almost 70% of the targets have error less than

50 km, while Octant and CBG estimate 27% and 40% of the

nodes in the same range. The accuracy on the European targets

decreases for all the methods. Spotter localizes 19% of the

hosts within 10 km, while in case of the other two methods

only 1% of targets have error within this range. The 50 km

range contains 40%, 4% and 8% of the nodes in the same

order. It can also be seen that on the full COGENT data set

the median errors are 30, 120 and 100 km for Spotter, Octant

and CBG, respectively.

Examining the European results on COGENT in more depth

we found that the measurements are highly affected by indi-

rect routing that has negative effect on distance estimations.

According to our analysis Spotter handles this phenomenon

better than CBG and Octant. This is due to the fact that the

latter models produce strict constraints around the landmarks,

while Spotter’s underlying probabilistic approach is less prone

to measurement errors.

Comparing the numerical results Spotter shows significantly

better performance on both reference data sets and appears to

be more robust against measurement anomalies. According to

a recent analysis of Shavitt et al., [10] shows that Spotter’s

accuracy is comparable to most of the well-known registry

based geolocation services.

V. THE SERVICE

In the previous sections we introduced a statistical approach

for localizing Internet hosts. Although this can be viewed as

the heart of the geolocalization process, for a reliable service

we need to implement several additional modules ranging from

data collection to result visualization. Next, we introduce the

Spotter service which integrates these diverse tasks into a

complete solution.

A. Localization Workflow

In order to enable easy extensibility the Spotter implemen-

tation follows a modular structure. The system is accessed via

a web interface where the user can enter the target domain

name or IP address to be localized. PlanetLab landmarks

measure delays to the target and the results are forwarded

to the evaluation module. This module applies the proposed

probabilistic model to determine the location of the requested

IP address. After evaluation, the expected target position is

returned to the user, while the individual cell probabilities

are visualized on Google Maps. Both the measurement data

and the resulting cell probabilities are stored in our database.

The following subsections highlight the key components of

the system.

1) Data Collection: Spotter measures 10 round-trip delays

from each PlanetLab landmark to the target node. The evalu-

ation module extracts the base values, i.e. the minimal round-

trip delay for each landmark. We assume that this way the

effect of queuing can be significantly decreased.

2) Model Evaluation: In its default setting Spotter uses

the probabilistic model described in Section III and IV. To

determine the location estimates as described in Section III we

need to divide the surface of the globe into finite number of

regions. For this step, we use the Hierarchical Triangular Mesh
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(a) PLANETLAB in North America
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(b) PLANETLAB in Europe
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(c) PLANETLAB over the world
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(d) COGENT in North America
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(e) COGENT in Europe
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Figure 4. Accuracy of the underlying models of Spotter, CBG and Octant on the PLANETLAB and COGENT reference data sets. The upper row contains
the CDF plots of the localization errors for the three methods evaluated on PLANETLAB reference data, while the figures in the lower row show the error
distributions on the more realistic COGENT ground truth collected by CAIDA. From left to right the columns represent these error distributions separately for
three geographic regions: North America, Europe, and all over the world respectively.

(HTM) [16] which is a multi level, recursive decomposition of

the sphere. It subdivides the surface into spherical triangles of

similar shapes and sizes. This method is based on a quad-tree

that is particularly good at supporting searches at different

resolutions from arc seconds to hemispheres. At a given

resolution level Spotter determines the probability value for

each HTM cell by approximating the integral in (2). If required

the results can be combined with other probability surfaces

such as those derived from population densities, city locations

or other geographic constraints.

The HTM library [17] provides very good performance in

calculating spatial quantities such as spherical distance, area,

intersecting regions, etc, and thus helps making the Spotter

implementation efficient. In addition, the hierarchical structure

of HTM provides flexibility in choosing the cell size for the

calculations. Therefore the trade-off between running time and

geographic resolution can be conveniently fine tuned.

3) Visualization: The outcome of the evaluation is a spatial

probability distribution and its moments. These results can be

visualized on geographic maps (for examples, see Section VI).

The Spotter web interface displays the estimated region and

the expected location on a Google Maps application.

4) Data Handling: The whole process is supported by the

Network Measurement Virtual Observatory [18] as its backend

database engine. Both the raw delay data and the localization

results are kept in this database and can be accessed publicly.

In the Spotter implementation the applied delay-distance

model is not hard coded into the evaluation module, instead it

is precalculated and stored in the database. Due to the common

database representation of models Spotter can easily work with

different delay-distance models. This feature is beneficial for

comparing and enhancing geolocation approaches.

B. The Web Interface

The Spotter service sits on top of the workflow presented

previously and is available at [5]. It supports two localization

modes. The single target mode expects an IP address or

domain name as input for localization. After submitting a

request the system geolocates the address and displays the

results. This mode is open for everybody to submit queries

that are performed immediately. Since the execution of the

workflow takes nearly a minute in this mode, it is not suitable

for larger node lists.

To optimize the localization process for multiple targets

the batch target mode can be used. Due to both security and

performance considerations the batch mode requires an initial

registration, after which users can upload a text file containing

the target addresses. Upon the targets in the list are localized,

Spotter sends the results back to the user by email.

C. Scalability

As Spotter is intended to localize large IP sets, scalability

becomes a key issue. We investigate Spotter’s performance by

running the data collection and evaluation processes on target

lists with different sizes. We use the COGENT reference IP set

described in Section IV-C to create the benchmark target lists.

From the 23000 original addresses we created 20 randomly

selected target lists of size 1000, 2000, ..., 20000. These lists
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were passed to the C# implementation of Spotter running on

a Dell Server with two Intel Xeon 2.5 GHz CPUs and 32

GB Memory. For each list we recorded the time needed for

performing round-trip delay measurements and the running

time of the evaluation process. The benchmark procedure

was repeated 10 times on different randomly sampled address

lists to obtain average running times for each list size. The

benchmark scenario shows that the data collection phase takes

significantly larger share from the overall running time since

we use low packet probe rates to avoid network flooding, e.g.

for 10000 distinct targets preforming the delay measurements

takes 25 minutes while the model evaluation phase is 7 minutes

long. Additionally, the localization takes a few minutes even

for very small target lists, due to the overhead of the communi-

cation with the PlanetLab nodes. Both the data collection and

the model evaluation show linear connection with the number

of targets, indicating that Spotter enables the localization of

large IP sets in reasonable time.

VI. LARGE SCALE APPLICATION SCENARIOS

To demonstrate the power of Spotter for large scale IP

geolocalization we give a brief insight into two possible

experimental scenarios. First, we determine the geographic

position of YouTube video streaming servers [19] for which

the existing services return false positions. Second, we illus-

trate that a reliable localization service can be beneficial for

network topology visualization and opens the door to analyze

its geographical properties. Since our methodology can be used

to determine the spatial probability distribution for each target,

by aggregating these individual spatial distributions we can

derive the joint probability map of multiple geographically

dispersed target hosts. This joint distribution describes the

possible locations of the whole IP set together and can be

applied for geographical visualization of large IP domains.

A. YouTube Server Locations

YouTube is a large scale content provider system controlling

thousands of data storages all over the world. In the sense of

Quality of Service their performance is extremely affected by

the geographic distance of the servers and the user. These data

centers are the most popular targets among the Internet users

and generate a significant proportion of the whole network

traffic. This is the reason why ISPs are highly interested in

their topological and geographical aspects.

In this study we focus on IP addresses belonging to the

74.125.0.0/16 address block serving most of the YouTube

contents. As we discussed in Section II the commercial

solutions like MaxMind locate mistakenly all these addresses

in Mountain View, CA. Next, we show that with Spotter the

localization of these targets is feasible.

As a first step we identified 9312 active servers (responding

to ICMP requests) out of the 65536 total addresses. Then,

these hosts were localized by Spotter using the previously

described batch mode. The localization results are presented in

Figures 5(a)-5(c). The maps show the aggregated probability

density of the possible locations of YouTube servers. The

places with large densities represent the largest data centers.

One can observe that in North America 8 centers can be

identified. The largest ones are located in Atlanta, Seattle,

Chicago and San Francisco. In Europe there are only 3 large

sites hosting YouTube contents: Frankfurt, Amsterdam and

London. In Asia 5 different locations can be found, in Tokyo,

Osaka, Taipei, Hong Kong and Singapore. The next use case

shows that the locations of these content delivery centers are

in accordance with the largest Internet junctions traversed by

the significant fraction of end-to-end network paths.

B. PlanetLab Router Map

In the last decade the structure of the Internet topology has

been studied from many aspects [20], [21], but only a few work

deals with the geographical properties of network elements

[6], [22]. Since Spotter is a publicly available service it can

be used to discover and analyze these hidden attributes. In

this section we overview a router localization scenario which

is fundamental for examining the geographical properties

of the Internet. In order to cover a dispersed part of the

Internet we utilized more than 700 PlanetLab nodes across

all over the world. For discovering IP addresses along the

paths between all the PlanetLab node pairs we performed

Paris traceroute measurements [20]. From the collected more

than 400 thousand traceroute experiments we identified 15725
distinct IP addresses. Note, that as different IP addresses might

belong to unique interfaces of the same router the real number

of individual routers might be less.

Similarly to the previous scenario the Spotter’s batch lo-

calization mode was applied to determine the spatial density

map for the network entities. The aggregated probability

density maps of the inter-PlanetLab routers can be seen on

Figures 5(d)-5(f). These routers are geographically much more

dispersed than the YouTube servers. By comparing the two

figure sets, one can recognize that the YouTube sites are

deployed in cities which denote frequent places on the router

maps, such as San Francisco, Frankfurt or Tokyo. The detailed

analysis of these results are presented in [22].

VII. CONCLUSION

In this paper we have proposed a probabilistic method and

an online service built on the top of it which estimates the

geographic location of Internet devices with 30 km median

precision. Our approach uses a statistical description of the

relationship between network delay and geographical distance.

While the existing methods are based on the presumption that

the delay-distance relation carries landmark specific charac-

teristics this study shows that there exists generic statistical

description of delay-distance behavior. According to this fun-

damental discovery, Spotter does not require calibration for

each individual landmark but derives a common delay-distance

model. To demonstrate the robustness and the accuracy of

Spotter we test the performance on both PlanetLab nodes

as well as on the novel COGENT reference set collected by

CAIDA. On both data sets our probabilistic model outperforms

the state-of-the-art models of CBG and Octant. This paper
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(a) YouTube sites in North America (b) YouTube sites in Europe (c) YouTube sites in Asia

(d) Inter-PlanetLab routers in North America (e) Inter-PlanetLab routers in Europe (f) Inter-PlanetLab routers in Asia

Figure 5. Two localization scenarios for demonstrating the power of Spotter. The density maps in the upper row shows the geographical distribution of the
IP domain serving most of the YouTube contents, while the maps in the lower row represent the possible locations of routers along network paths between
all the PlanetLab node pairs.

shows that the Spotter’s underlying probabilistic model is less

prone to measurement errors and other anomalies than the

prior techniques.

To manifest the robustness and applicability of our approach

we developed an online geolocation service that gives an

effective way for positioning large number of IP addresses. We

believe that Spotter will stimulate the research in the field by

providing a valuable tool for understanding the geographical

aspects of Internet.
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