
Towards Disaggregated P4 Pipelines with Information Exchange
Minimization

Hiba Mallouhi
ELTE Eötvös Loránd University

Budapest, Hungary
hibamallouhi@inf.elte.hu

Sándor Laki
ELTE Eötvös Loránd University

Budapest, Hungary
lakis@inf.elte.hu

ABSTRACT
With the advent of programmable data plane hardware and the
use of P4 as a high-level programming language, switches not only
implement existing protocols but can also offload other tasks easily.
However, hardware switches introduce several constraints on the
number of computational stages, available SRAM/TCAM, ALUs,
etc. In future use cases, such a device may potentially host multiple
pipelines at the same time, resulting in additional constraints on the
available resources for a single pipeline. The limitations of a single
switch can however be handled by disaggregating the pipeline
and deploying the resulted subpipelines at different switches in
the network. In such approach, in addition to handling routing
and packet classification, we also have to solve the information
exchange between the depending subpipeline elements, adding
extra headers transmitting metadata and variables needed for the
continuation of the pipeline execution on another switch in the
network. This paper explores the disaggregation of P4 pipelines
with long-dependency sequences into subpipelines that minimizes
the information exchange overhead and considers constraints on
the maximum length of dependency chains in each subpipelines in
a way to reach a fully automated process eventually.

CCS CONCEPTS
• Networks → Programmable networks;

KEYWORDS
P4, Pipeline Disaggregation, Dependency graph, Dependency se-
quence, Overhead minimization, Programmable networks.

ACM Reference Format:
Hiba Mallouhi and Sándor Laki. 2022. Towards Disaggregated P4 Pipelines
with Information Exchange Minimization. In CoNEXT Student Workshop
2022 (CoNEXT-SW ’22), December 9, 2022, Roma, Italy. ACM, New York, NY,
USA, 3 pages. https://doi.org/10.1145/3565477.3569156

1 INTRODUCTION
In the past few years, different methods emerged to optimize P4[2]
pipelines or disaggregate them between various devices in the
network. In Flightplan[5], they do the splitting of P4 program by
manually adding segmentations to the different functions of the

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
CoNEXT-SW ’22, December 9, 2022, Roma, Italy
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9937-1/22/12. . . $15.00
https://doi.org/10.1145/3565477.3569156

program while we focus on splitting by adding the constraints of
a long-dependency and overhead minimization. In [3] they imple-
ment disaggregation by changing the physical layout and adding a
crossbar and memory clusters, we argue that this will add extra cost
and overhead that we want to minimize. Though these pioneering
papers analyze and address several issues related to how pipeline
disaggregation and optimization can be automated, they require
manual steps in most cases, keeping lots of questions unsolved.

In this paper, we introduce our preliminary results towards an
automated P4 pipeline disaggregation framework that will be able
to handle multiple constraints and objectives, and generate the cor-
responding P4 programs implementing the disaggregated pipeline
elements. A conceptual overview of the proposed method is de-
picted in Fig. 1. As an initial step, we assume the P4 program is
represented as a program graph in step 1, which is used to generate
a table dependency graph of edges (E) and vertices (V). As intro-
duced in[4], we currently consider match and action dependencies
only: 1) A match dependency occurs between two tables when the
second table needs to match on a field or variable that was modified
by the first table. 2) An action dependency occurs between two
tables when the second table needs to modify a field or variable that
was also modified by the first table. This means some tables in the
pipeline cannot be executed before the tables they are dependent
on, resulting in a constraint on the placement order of tables [3].
Each edge in the dependency graph is annotated with the variables
and fields causing the dependency. Since a complex P4 program
might have a long dependency sequence between its tables, we ar-
gue that disaggregating such pipeline into subpipelines will result
in better utilization of the programmable data plane hardware or
make possible the deployment of P4 programs that are too complex
for a single device. We assume that this step can be done with tools
like P4Query [1]. Our contribution is related to step 2 in which we
partition tables into two disjoint groups 𝑃1 and 𝑃2, applying Alg. 1.
We assume there is a specific dependency limit for each switch
as an abstract stage constraint that limits the longest dependency
chain between tables inside each partition. A possible partition-
ing ensures that there is no edge in the dependency graph from
any tables in 𝑃2 to a table in 𝑃1. Each partition should also meet
the requirement on the dependency limit. The resulting overhead
header to be transferred between the two subpipelines includes
the variables and fields that belong to dependencies from 𝑃1 to 𝑃2
and are not stored in valid packet headers. In addition, we also
transfer a branch point variable (e.g., 8 bit long) that marks the ter-
minating position in the first subpipeline and is used in the second
subpipeline to continue the pipeline execution from the correct
state. Our disaggregation method aims to minimize the overhead
header between the partitions. It calculates the overhead resulting

23

https://doi.org/10.1145/3565477.3569156
https://doi.org/10.1145/3565477.3569156
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3565477.3569156&domain=pdf&date_stamp=2022-12-06

CoNEXT-SW ’22, December 9, 2022, Roma, Italy H. Mallouhi et al.

Derived Programs

P1 Program P2 Program

Dependency GraphP4 Program Graph

A.apply()

B.apply()

C.apply()

D.apply() E.apply()

F.apply() G.apply()

H.apply()

C.apply()
hit miss

A

B
C

D

E

F

G

H

Dependent „variables”
hdr.x.y, meta.z, var_w

Table Partitions

P1: {B, C, F, G}

P2: {A, D, E, H}

Overhead header:
{BranchPoint (BP),

meta.a, var_w}

Dep. Limit = 1

A.apply()B.apply()

C.apply()

F.apply() G.apply()
D.apply() E.apply()

H.apply()

C.apply()
hit miss

BP=1 BP=2

BP?1 2 3

Figure 1: Proposed Disaggregation Method

from the variables transfer between the subpipelines and finds the
minimum overhead exchange among the sets of possible partitions
that satisfy the constraint on the dependency limit. This step may
lead to multiple partitioning results with the same minimum over-
head. Thus further objectives could be incorporated in the selection
of the best partitioning. After having the partition, the proposed
method derives two P4 programs representing the disaggregated
subpipelines, shown as step 3 in the figure. Step 3 is part of our
future work. The proposed algorithm can be solved in polynomial
time of 𝑂 (𝑛3). We note that in this paper we only focus on step 2
that is responsible for creating possible partitions that minimizes
the transmission overhead between executing switches. We assume
that Step 1 can be done by tool like P4Query [1], while step 3 is
part of our future work.

Algorithm 1 Overhead minimization-based disaggregation

1: Table Set, 𝑇 = {𝑡1, 𝑡2, . . . , 𝑡𝑛}
2: Dependency Graph, 𝐺 = (𝐸,𝑉) where 𝑉 = 𝑇

3: Dependency-Variable Map, 𝑉𝑎𝑟 (𝑒) = {𝑎1, . . . } (𝑒 ∈ 𝐸)
4: Per-Switch Dependency Limit, 𝐿 ≥ 0
5: 𝑜𝑚𝑖𝑛 ←∞; 𝑂𝑈𝑇 = ∅
6: for each possible partitions (𝑃1, 𝑃2) do
7: if ∀path 𝑅𝑖 in 𝐺𝑃𝑖 : length(𝑅𝑖) ≤ 𝐿 (𝑖 = 1, 2) then
8: 𝑜, 𝑣 ← overhead(𝑃1, 𝑃2,𝐺,𝑉𝑎𝑟)
9: if 𝑜 < 𝑜𝑚𝑖𝑛 then
10: 𝑜𝑚𝑖𝑛 = 𝑜 ; 𝑂𝑈𝑇 = {(𝑃1, 𝑃2, 𝑣)}
11: end if
12: if 𝑜 = 𝑜𝑚𝑖𝑛 then
13: 𝑂𝑈𝑇 = 𝑂𝑈𝑇 ∪ {(𝑃1, 𝑃2, 𝑣)}
14: end if
15: end if
16: end for
17: return 𝑜𝑚𝑖𝑛,𝑂𝑈𝑇

2 PRELIMINARY RESULTS
In this section, we evaluate our partitioningmethod (Alg. 1) on three
P4 programs (L3dc.p4 and L2L3Complex.p4 taken from [4], and a
toy program l2l3simpleMtag.p4). The details about the programs are
summarized in Table 1. The listed parameters include the number of
tables(𝑛𝑇), the number of match-action-dependencies (𝑛_𝑚𝑎𝑑), the
number of variable in match-action-dependencies (𝑛_𝑚𝑎𝑑_𝑉𝑎𝑟)
and the length of the longest dependency chain 𝐿𝑆 .

P4 program (𝑛𝑇) (𝑛_𝑚𝑎𝑑) (𝑛_𝑚𝑎𝑑_𝑉𝑎𝑟) 𝐿𝑆

L3dc.p4 11 9 12 3
l2l3simpleMtag.p4 13 11 11 6
L2L3Complex.p4 24 27 34 8

Table 1: P4 programs and their parameters

Table 2 shows the partitioning results of our algorithm. For
different dependency limits (𝐿) we show two values (𝑂, 𝑁) in each
cell: the size of the minimum overhead header in bits (without
the branch point variable) and the number of partitioning results
with the same minimum overhead, resp. It is worth noting that for
L3dc.p4 when 𝐿 = 2, there are 6 sets with only 16 bits of overhead to
be exchanged while l2l3simpleMtag.p4 has no possible sets for the
same limit. l2l3simpleMtag.p4 has one bit of overhead to exchange
for the four possible optimal cases when 𝐿 = 3 and L2L3Complex.p4
has the 28 bits for the 3 sets of 𝐿 = 5. There are also simple cases
when𝑂 = 0, meaning that there is no dependency between the two
partitions. These cases led to imbalanced table distribution between
the two partitions.

P4 program 𝐿 = 2 𝐿 = 3 𝐿 = 4 𝐿 = 5
L3dc.p4 (16,6) (0,6) (0,6) (0,6)

l2l3simpleMtag.p4 ∅ (1,4) (0,8) (0,17)
L2L3Complex.p4 ∅ ∅ ∅ (28,3)

Table 2: (𝑂, 𝑁): minimum overhead and number of optimal
partitioning cases

3 FUTURE DIRECTIONS
We present our preliminary results towards a framework that aims
to automate P4 program disaggregation. Our future work includes:
1) Extending the scope of disaggregation to multiple subpipelines
considering a more complex topology such as a tree-shaped net-
work as we currently explore a linear pipeline only. 2) Introducing
additional pipeline resources (e.g., SRAM and TCAM) needed to
enable disaggregation with "branch-and-resume" between multiple
pipelines and other hardware-specific constraints.

ACKNOWLEDGMENT
Authors thank the support of the National Research, Development
and Innovation Office – NKFIH, FK 138949.

24

Towards Disaggregated P4 Pipelines with Information Exchange Minimization CoNEXT-SW ’22, December 9, 2022, Roma, Italy

REFERENCES
[1] 2022. P4Query tool. https://github.com/P4ELTE/P4Query. (2022). Accessed:

2022-06-01.
[2] Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, NickMcKeown, Jennifer Rexford,

Cole Schlesinger, Dan Talayco, Amin Vahdat, George Varghese, et al. 2014. P4:
Programming protocol-independent packet processors. ACM SIGCOMM Computer
Communication Review 44, 3 (2014), 87–95.

[3] Sharad Chole, Andy Fingerhut, Sha Ma, Anirudh Sivaraman, Shay Vargaftik, Alon
Berger, Gal Mendelson, Mohammad Alizadeh, Shang-Tse Chuang, Isaac Keslassy,

et al. 2017. drmt: Disaggregated programmable switching. In Proceedings of the
Conference of the ACM Special Interest Group on Data Communication. 1–14.

[4] Lavanya Jose, Lisa Yan, George Varghese, and Nick McKeown. 2015. Compil-
ing packet programs to reconfigurable switches. In 12th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 15). 103–115.

[5] Nik Sultana, John Sonchack, Hans Giesen, Isaac Pedisich, Zhaoyang Han, Nishanth
Shyamkumar, Shivani Burad, André DeHon, and Boon Thau Loo. 2021. Flight-
plan: Dataplane disaggregation and placement for p4 programs. In 18th USENIX
Symposium on Networked Systems Design and Implementation (NSDI 21). 571–592.

25

https://github.com/P4ELTE/P4Query

	Abstract
	1 Introduction
	2 Preliminary Results
	3 Future Directions
	References

