
SUBMITTED TO IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT 1

DeepQoS: Core-Stateless Hierarchical QoS in
Programmable Switches

Ferenc Fejes, Szilveszter Nádas, Gergő Gombos, Sándor Laki, Member, IEEE

Abstract—Novel applications and network scenarios challenge
existing traffic management strategies. Hierarchical Quality of
Service (HQoS) provides a fine control of resource sharing and
delay, but traditional HQoS solutions have challenging complexity
that prevents their deployment in the traffic management engine
of high-speed switches. Programmable switches have emerged
to make the packet processing pipelines flexible and reconfig-
urable, but their traffic management capabilities still rely on
fixed functions that cannot handle the complexity of traditional
HQoS approaches. In this paper, we show how the extended
programmability can help in addressing this challenge by the
application of a fundamentally different algorithm. To emulate
HQoS behavior we extend our core-stateless resource sharing
framework called Per Packet Value (PPV) with a HQoS-packet
marker architecture called DeepQoS. DeepQoS can be used to
mark resource sharing policies of different layers simultaneously
and effectively at a single point, e.g., ensuring the fair share of a
household’s traffic within an access aggregation network, while
also controlling the shares of its subflows. In the PPV framework,
bottleneck scheduling is very simple and is unaware of flows and
policies, which are encoded to Packet Values. DeepQoS can use
these existing simple PPV schedulers without any change. To
demonstrate the deployability of the proposed method, we have
created the DeepQoS marker implementation in DPDK while
redesigned and implemented our packet scheduler called Virtual
Dual Queue Core Stateless Active Queue Management (VDQ-
CSAQM) on a P4-programmable switch. Using extensive mea-
surements we demonstrate the unique capabilities of DeepQoS
to realize rich and deep HQoS.

Index Terms—Computer network management, Quality of
service, Resource management, Software defined networking.

I. INTRODUCTION

Good Quality of Service in novel applications such as
AR/VR, cloud rendered gaming, HD or holographic video con-
ferencing and remote presence requires high bandwidth, low
latency or both. End users connect to the Internet with different
subscriptions and access properties. As gigabit-speed access
links became widespread, the possibility of temporal and
even permanent overloads in the access aggregation network
(AAN) has increased. These periods can be handled by over-
provisioning, but it has a high price: high infrastructure cost
and underutilization in most of the time. Hierarchical quality

Manuscript submitted June 15, 2021. The research of S. Laki was supported
by the János Bolyai Research Scholarship of the Hungarian Academy of
Sciences. S. Laki and G. Gombos also thank the support of the "Application
Domain Specific Highly Reliable IT Solutions" project that has been imple-
mented with the support provided from the National Research, Development
and Innovation Fund of Hungary, financed under the Thematic Excellence
Programme TKP2020-NKA-06 (National Challenges Subprogramme) funding
scheme. (The corresponding author: S. Laki, e-mail: lakis@elte.hu)

F. Fejes and Sz. Nádas are with Ericsson Research, Budapest, Hungary.
G. Gombos and S. Laki are with ELTE Eötvös Loránd University, Budapest,

Hungary.

of service (HQoS) is a widely adopted solution to ensure
complex resource sharing policies in AANs, where resource
sharing is controlled within and among traffic aggregates
(TAs), e.g., between virtual operators, network slices, users,
or subflows of users. Nowadays, HQoS is typically enforced
in the border gateway of the access network, since all traffic
going towards or coming from the Internet flow through this
node. Note that this solution puts high computational load on
the gateway node and has further limitations.

Another area where HQoS has potential benefits is cloud
networking where it can ensure complex QoS policies (in-
cluding resource sharing and latency requirements) between
tenants at the highest level as well as among flows of each
tenant at bottom of the hierarchy. The access to the shared
resources at tenant level is described in the Service Level
Agreement, reflecting the per-tenant payment granularity ap-
plied by today’s data centers. However, inside the tenant there
may be various sub-services whose traffic shares the capacity
allocated to the tenant and thus differentiation between the
subflows can greatly improve efficiency and flexibility of
tenant management and operation. Moreover, HQoS also has
potential benefits in any other physical network infrastructures
(e.g., private WAN, 5G/6G RAN, etc.) that are shared among
virtual networks (e.g., slices, virtual operators). It can solve not
only the isolation of virtual networks at the top level but the
differentiation between traffic groups inside the virtual slices.

Implementing HQoS is challenging due to its high complex-
ity. Traditional solutions require per-flow states and a complex
queue hierarchy to be configured and managed [1]. Such
complexity exceeds the traffic management (TM) capabilities
of high-speed hardware switches including P4-programmable
ones.

In this paper, we show how this challenge can be addressed
with the extended programmability of P4-switches and our
core-stateless resource sharing framework called Per Packet
Value (PPV) [2]. Similarly to other core-stateless resource
sharing proposals, the PPV framework consists of two key
components: 1) A packet marker that tags each packet with a
packet value according to the predefined QoS policy and 2)
an Active Queue Management (AQM) algorithm or scheduler
that solely uses the packet value carried by each packet to
decide which packet to drop or mark with Explicit Congestion
Notification (ECN) Congestion Encountered (CE) flag in case
of network congestion. The original PPV framework assumes
flat policy hierarchy and thus it only ensures flexible resource
sharing between traffic aggregates (TAs) where a TA could
be, e.g., a flow, the aggregated traffic of an application,
a subscriber or a tenant. To support a multi-level policy

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2022.3152017

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.



SUBMITTED TO IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT 2

hierarchy, we extend the packet marker component of PPV
so that it can encode complex HQoS policies among the
flows of each TA into packet values. The proposed new
method called DeepQoS enables handling of policy hierarchies
built from strict priority and weighted fair resource sharing
components with arbitrary depth (as in traditional HQoS
policies). The modified marker also ensures that the desired
resource sharing between TAs still holds as in the original
PPV framework. DeepQoS only requires changes in the packet
value marking algorithm, letting the PPV-based scheduler
untouched. In addition to HQoS policy encoding, we present
the first realization of our Virtual Dual Queue Core-Stateless
Active Queue Management (VDQ-CSAQM) [3], a PPV-based
AQM method supporting both Classic and L4S (Low Loss,
Low Latency and Scalable throughput) Internet services in
programmable hardware switches.

In summary, the key contributions of this paper include:
• We propose DeepQoS, an extended PPV packet marker

to implement complex HQoS policies (see Sec. V).
• We show and prove that DeepQoS keeps the TA-level re-

source sharing properties of the original PPV framework
(see Sec. VII and Appendix A and B).

• We provide the data and control plane design for our PPV-
based L4S scheduler called VDQ-CSAQM (see Sec. VI).

• We have implemented the prototypes of DeepQoS marker
in DPDK and VDQ-CSAQM on an Intel/Barefoot Tofino-
based switch that are used in the performance evaluation.

• We present thorough measurements in our high-speed
testbed to demonstrate the viability of the proposed
method under realistic traffic mixes (see Sec. VII).

II. RELATED WORK

The area of sharing network resources have a rich literature
with fundamentally different approaches. In this section, we
aim to give an overview of the most important related work.

A. Stateful Resource Sharing

The majority of existing resource sharing solutions deployed
in production networks rely on the paradigm of weighted fair
queueing and strict priority. These methods use flow states
at the bottleneck nodes for packet scheduling. Fair queueing
methods like [4], [5], [6] propose to map flows to a number
of queues. These solutions only work well if the number of
queues is in the same order of the number of flows. This
can be handled in software implementations easily where
high performance is not a requirement but hardware solutions
are too expensive and/or have performance constraints. High-
speed hardware switches only have a limited number of queues
per egress port; they were simply not designed for supporting
per-flow queueing.

In addition, if we want to use a different resource sharing
policy, it is hard to change since it require the reconfiguration
of several network devices. One solution for this problem is
the OpenQueue [7] that provides a language in which we can
easily add or change policies and manage the buffers in run-
time at a high abstraction level.

Some recent proposals aim to handle these issues for data
center and WAN environments and go further by applying
policies described by utility functions to control weighted
queues of the bottleneck nodes or by enabling hierarchical
resource sharing with flexible policy definition. For example,
NUMFabric [8] aims at solving the network utility maximiza-
tion problem by splitting it between end-hosts and switches,
and introducing a weight exchange protocol between the two,
promising fast convergence times in data center environments.
Though NUMFabric provides very flexible means to describe
a rich set of policies, it still applies traditional weighted fair
queueing in the switches.

The BwE [9] is another approach. It uses rate limiting
instead of weighted queues to manage the resource sharing for
a globally-deployed private WAN. It introduces a bandwidth
function to define flexible policies. BwE also shares the idea
of the PPV framework [10] that routers cannot support the
scale and complexity of enforcing per-flow policies. The
difference between the two solutions is BwE uses a centralized
control while PPV solves the throughput allocation in a fully
distributed way. Note that bandwidth function policies of BwE
can naturally be mapped to PPV policies and vice versa.

A virtual queue based per slice traffic management for
P4 switches is proposed in [11]. While it extends the traffic
management capabilities of the switch, it still requires traffic
classification and per traffic aggregate states, therefore it
cannot be extended for a complex HQoS hierarchy.

Flow Queue algorithms, like fq-codel [12] can solve equal
resource sharing among a moderate number of flows. Ex-
tending that to more flows, to HQoS hierarchies and flexible
policies beyond flow fairness is not trivial.

While [13] shows that implementing fair queueing for large
number of flows is possible, it still requires flow identification
and policy knowledge in every bottleneck.

B. Stateless resource sharing

Several resource sharing architectures have been proposed in
the past decade that work without any per-flow states inside the
network. Such architectures typically implement two mecha-
nisms: 1) stateful packet tagging implemented at the edge of
the network (i.e., Edge Nodes); 2) stateless packet scheduling
implemented by all the nodes in the core of the network
(i.e., Core (or Resource) Nodes) that handles (e.g., drop, ECN
mark, prioritize, etc.) incoming packets solely based on their
tags. According to this terminology, all the packet forwarding
elements that could potentially be a bottleneck in the network
are Core Nodes, including Edge Nodes as well.

The most widely known of such architectures is Diff-
Serv [14] where markings identify a set of pre-defined policies
called Per-Hop Behaviors (PHBs) to be applied by the routers.
One of the key disadvantages of this approach is that Core
Nodes have to be re-programmed whenever a new PHB (a new
policy) is introduced, since Edge Nodes only assign packets to
traffic classes and mark them accordingly, but the PHB logic
is implemented by the Core Nodes.

Another such proposal is Core Stateless Fair Queuing
(CSFQ) [15] that implements a single policy: proportional

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2022.3152017

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.



SUBMITTED TO IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT 3

fair bandwidth sharing and marks packets of each flow with
its estimated rate at the edge. In contrast to DiffServ, the
logic of the policy to be applied is implemented by Edge
Nodes while Core Nodes solely use the packet markings
during dropping and scheduling, resulting in a highly scalable
bandwidth allocation approach. FairCloud [16] proposes the
use of CSFQ for network isolation in data center networks but
it does not deal with policy hierarchies. CSFQ has recently
been extended to support two-level HQoS [1], however this
extension requires flow states (of the higher hierarchy level)
in the Core, thus it is less scalable both in depth of the HQoS
and in the number of flows than the approach proposed in this
paper.

Rainbow Fair Queueing (RFQ) [17] assigns a few drop
precedence levels called colors to the packets while Core
Nodes drop packets according to the assigned precedence
level.

This concept is extended by the Per Packet Value (PPV)
method [10] that uses scalar values as packet markings in-
stead of a few colors. PPV method uses a Throughput-Value
Function to express operator policies and solves the resource
sharing problem by maximizing the total transmitted packet
value. It aims at providing a practical, distributed approximate
solution for the network utility maximization problem [18].
Different AQM algorithms [19], [20], [3] have also been
proposed for the PPV concept.

The PPV framework is extended with the support of re-
source sharing policies across multiple layers of virtualization
in [21] by introducing the HPPV remarker. Even though HPPV
provides a general HQoS solution, the remarking algorithm is
unnecessarily complex, especially if multiple hierarchy levels
can be marked in a single point.

A recent core-stateless resource sharing proposal is
ABC [22] that measures the activity level of flows and encodes
activity information into packets that is solely used at forward-
ing nodes to enforce fair-bandwidth sharing among users by
dropping packets with high activity values more likely. This
solution is similar to the PPV method, but is less flexible in
defining operator policies.

Core-stateless networking solutions used to be a widely
examined research area in the early 2000s, however only a
very few proposals [10], [19], [20], [3], [22], [1] have been
published in the past few years. With the emerging trend
of softwarization in computer networks and with the advent
of programmable data planes, their applicability has become
possible even in production environments. A very limited
prototype of a HQoS capable PPV packet marker and of a P4
PPV scheduler was demonstrated in [23]. This paper extends
the packet marker for general HQoS hierarchies and optimizes
the P4 scheduler for higher bottleneck capacity.

Though the above resource sharing methods are closest to
our work, there are fundamentally different approaches like
ELMO [24], RDNA [25] and PolKa [26] handling QoS as
a routing problem. These source routing-based solutions also
share the core-stateless idea: packets are tagged at the source
and tags are used in routing decisions of network nodes,
enabling end-hosts/applications to select the route satisfying
their requirements. They mostly focus on ensuring different

end-to-end delay requirements and do not directly deal with
congestion along the used paths. The method proposed in this
paper solves a different problem but could be combined with
these source routing approaches. Link-wise resource sharing
and route selection are both important to satisfy complex QoS
requirements in an arbitrary network.

III. SYSTEM MODEL

In this section, we briefly overview our core-stateless re-
source sharing framework called Per Packet Value (PPV) and
introduce the key definitions needed for the understanding of
its HQoS extension. Similarly to other core-stateless proposals
[14], [22], [17], [15], [1], the PPV framework consists of
two key elements: 1) a packet marker which assigns values
to each packet of a traffic aggregate (e.g., the total traffic
of a subscriber in an access aggregation network or a tenant
in a data center) according to a predefined resource sharing
policy; and 2) a scheduler that solely uses the values carried
by packets to make a decision on which packet to drop or
mark with ECN CE flag if congestion is experienced (e.g., the
buffer is full or its size exceeds a predefined threshold, etc.).

Accordingly, each traffic aggregate (TA) has its own marker
instance that labels each packet entering the PPV networking
domain with a drop precedence called Packet Value (PV).
Though policy-based marking maintains states for TAs, each
marker instance operates independently. Thus, packet markers
can be implemented and deployed in a distributed way (e.g.,
running in a Kubernetes Cluster, Telecom/Edge Cloud).

The scheduler is implemented by all the nodes (e.g., routers,
end-hosts) in the PPV domain since each of them could be
a potential bottleneck. When the buffer is congested, these
nodes drop (or mark with ECN CE) one or more packets
– either from the buffer or the newly arrived packet – with
the smallest PV(s), instead of tail dropping. To support the
coexistence of flows with L4S and Classic congestion controls,
a modified scheduler called VDQ-CSAQM has been proposed
in [3]. It uses separate queues for the two congestion control
classes to satisfy the different delay requirements but at the
same time applies a coupled dropping strategy to ensure the
desired resource share even between flows with incompatible
congestion control.

A. Policy Encoding

As mentioned, the core essence of PPV is how packets of
a traffic aggregate (TA) are tagged with PVs. To this end,

10Mbps

45Mbps

Flow1=0

Flow3=3.75

Flow1=10

Flow3=17.5

0 5 10 15 20 25
Throughput (Mbps)

P
a

ck
e

t 
V

a
lu

e

t�Flow1
t�Flow2

45Mbps BN

PVmax

0

10Mbps BN
t�Flow3

Flow2=6.25

Flow2=17.5

Fig. 1. Resource sharing with the PPV framework

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2022.3152017

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.



SUBMITTED TO IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT 4

10−2 10−1 100 101 102 103

Throughput [Mbps]

105

106

107

108

109

1010
P
ac
ke
t
V
al
ue

(I.)

(II.)

(III.)

2x

10M-rest

4x

Gold (G)

Silver (S)

Background (B)

Voice (V)

Fig. 2. Policy examples as Throughput-Value Functions

we use a Throughput-Value Function (TVF) that is defined
as the derivative of a utility function: 𝑉𝑎 (𝑥) = 𝑈 ′𝑎 (𝑥). Note
that for each TA 𝑎 the utility function 𝑈𝑎 (𝑥) expresses the
application gain (or the value realized by the network operator)
if throughput 𝑥 is assigned to it from the shared network-
resources. The derivative of the utility function represents the
extra value (e.g., the increase in profit for the operator) that
can be generated if extra throughput is given to TA 𝑎. In this
paper, we assume that TVFs are strictly monotone decreasing
in the possible rate range of the given TA.

In the PPV method, TVFs are used to label packets where
the packet value expresses the gain that is realized when the
packet is delivered (marginal utility in other words). The TVF
𝑉 (.) defines the PV distribution of a TA for any sending rate
𝑅. Specifically, the throughput contribution of packets with
PV at least 𝑉 (𝑥) in the TA is 𝑥 (for any 𝑥 : 0 ≤ 𝑥 ≤ 𝑅). A
practical packet marker [27] of TA 𝑎 continuously measures
the aggregate’s sending rate 𝑅𝑎, chooses 𝑥 from range [0, 𝑅𝑎]
uniformly at random at packet arrival and assigns PV 𝑝 =

𝑉𝑎 (𝑥) to the given packet.
Fig. 1 illustrates how TVFs and PVs can be used to share the

bottleneck capacity between various traffic aggregates. In the
first case, the bottleneck capacity is 10Mbps shared between
three flows. The red, blue and green curves on the right
side represent the TVFs of Flow1, Flow2 and Flow3, resp.
The gray dotted line illustrates the cutoff value that results
in a resource allocation 0, 6.25 and 3.75Mbps for Flow1,
Flow2 and Flow3, resp. This allocation is ensured by only
transmitting packets with PV above the cutoff level. One can
observe that Flow1 has no packet with PV above this threshold
and thus it cannot even transmit a single packet. In the case of
a 45Mbps bottleneck, the cutoff value is much smaller and thus
all three flows have non-zero assigned throughput. The purple
dotted line represents the cutoff value, leading to 10, 17.5 and
17.5Mbps throughput allocation for Flow1, Flow2 and Flow3,
resp. In this case, only packets below the threshold, marked by
the purple line, are dropped (or marked with ECN CE). One
can observe that the inverse function of a TVF is basically a
bandwidth function introduced in [9], thus bandwidth function
policies can easily be mapped to TVFs in the PPV system
model, and vice versa.

In general, at high congestion only packets with high PVs
are transmitted, more precisely packets with PV above a

certain cutoff value that we call Congestion Threshold Value
(CTV). The CTV at a bottleneck represents the minimal PV
that can successfully be transmitted via the congested link. The
observed CTV reflects the actual congestion level, since at a
congested link the total throughput of packets having PV at
least the current CTV is exactly the bottleneck capacity. CTV
is not a parameter of the proposed system, but an emergent
property of the applied drop minimum-PV first AQM strategy.
The amount of high and low PV packets determines the
resource share between various flows, resulting in that at high
congestion, aggregates with larger share of high PV packets
get more throughput.

Fig. 2 depicts few example policies expressed as TVFs.
Voice traffic is rate limited and has a guaranteed throughput
need. It is defined by the red curve consisting of two segments:
up to the rate limit PVs are represented by a slowly decreasing
line close to the maximum value representing strict priority for
voice packets, and above that the smallest value (0) is assigned
to the packets, emulating a rate limiter policy. The blue,
orange and green TVFs express weighted fairness between the
different flow groups, where the weights rely on the congestion
level (CTV). For example, at high congestion (I.) a Gold flow
can get twice the throughput of a Silver flow; at medium
congestion (II.) Silver flows get 10Mbps throughput and the
rest can be used by Gold flows; at low congestion (III.) 1:4
resource share is defined between Silver and Gold flows.

B. Hierarchical Quality of Service

The key building blocks of HQoS include strict priority and
weighted-fair scheduling. In traditional design, strict priority
scheduling is implemented between queues with different
priorities, ensuring that a packet from a given queue can only
be served if there is no packet in higher priority queues.
Weighted-fair scheduling assumes queues with weights and
packets are served by weighted deficit round robin scheduling.
In both cases, packets that needs to be handled similarly (be-
longing to the same flow, flow-group, subscriber, slice, etc.) are
forwarded to the same queue. These blocks can be combined
and organized in a multi-level hierarchy to create complex
resource sharing policies. The traditional HQoS implementa-
tion requires flow classification and thus the configuration and
maintenance of per-flow states and a hierarchy of queues in
all the interior nodes implementing the scheduler (see Fig. 4).
In contrast, our proposal realizes HQoS policies in the packet
marker by reorganizing packet values among the packets of
flows within a traffic aggregate (TA) so that the packet value
distribution of the entire TA remains the same. Packets are
tagged once at the entry point of the PPV network domain. The
PPV scheduler implemented by all the nodes in the network
solely does not require any change. It solely uses the packet
tags and still works without complex queue management in a
flow- and hierarchy-unaware way.

As mentioned previously, each packet of a TA is marked
with a packet value that is chosen randomly according to the
distribution defined by the total sending rate and the applied
TVF. It has already been shown that this distribution ensures
the desired resource sharing among various TAs. For TA 𝑎

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2022.3152017

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.



SUBMITTED TO IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT 5

0 5 10 15 20
0

PKT1

PKT2

Flow1

r1=5 Mbps

Flow2

r2=10 Mbps

V(rnd(0, 15))

V(rnd(0, 15))

15 Mbpsrnd(0,r1+r2)

P
a

ck
e

t 
V

a
lu

e

Throughput (Mbps)

(a) Without flow differentiation.

0 5 10 15 20
0

PKT1

PKT2

Flow1 (high prio)

r1=5 Mbps

Flow2 (low prio)

r2=10 Mbps

V(rnd(0, 5))

V(5+rnd(0, 10))

5 Mbps 10 Mbpsrnd(0,r1)

P
a

ck
e

t 
V

a
lu

e

r1+rnd(0,r2)

Throughput (Mbps)

15 Mbps

(b) Emulated strict priority scheduling.

0 5 10 15 20
0

PKT1

PKT2

Flow1 (w1=2/3)

r1=5 Mbps

Flow2 (w2=1/3)

r2=10 Mbps

V(rnd(0, 5)/(2/3))

Assuming rnd(0, 10)>2.5

V(7.5+(rnd(0, 10)-2.5))

7.5 Mbps

rnd(0,r1)/w1

P
a

ck
e

t 
V

a
lu

e

R=rnd(0,r2)

if RGr1*w2/w1

   R/w2 

else 

   r1/w1+(R-r1*w2/w1)

Throughput (Mbps)
15 Mbps5 Mbps

2.5 Mbps

(c) Emulated weighted-fair scheduling.

Fig. 3. Modeling HQoS policies by encoding them into packet values. We assume a single traffic aggregate with two flows a) without flow differentiation,
b) with strict priority ordering and c) with weighted-fair scheduling.

with sending rate 𝑅𝑎 and TVF 𝑉𝑎 (.), the packet value distri-
bution generated by the marker algorithm in steady state can be
described as 𝑃[𝑣 > 𝛿] = 𝑉−1

𝑎 (𝛿)/𝑅𝑎 (𝛿 ∈ [𝑉𝑎 (𝑅𝑎), 𝑉𝑎 (0)]).
This is a consequence of the PPV marking algorithm as if
𝑥 ∈ [0, 𝑅𝑎] is a uniform random variable, the corresponding
packet value is described by a random variable 𝑣 = 𝑉𝑎 (𝑥).

Fig. 3 depicts more complex scenarios with two flows
within the same TA 𝑎. The sending rate of the flows are
𝑟1 = 5Mbps and 𝑟2 = 10Mbps, resp., while TA 𝑎 applies
TVF 𝑉𝑎 (.) as its top-level resource sharing policy. Fig. 3a
shows how packets of the two flows are marked according to
the original PPV framework, handling them equally within the
same aggregate. In this case, each flow in the TA has the same
packet value distribution in steady state that is only affected
by the actual throughput of the TA and the applied TVF.
Since the marker does not differentiate between the flows, it
results in the same conditional probability distribution for both
flows 𝑃[𝑣 > 𝛿 |Flow𝑖] = 𝑉−1

𝑎 (𝛿)/𝑅𝑎 where 𝑃[Flow𝑖] = 𝑟𝑖/𝑅𝑎.
This is caused by the PV marking algorithm which chooses
rate samples from [0, 𝑅𝑎] according to a uniform distribution
independently of which flow the packet belongs to. As a result,
the rate samples 𝑥 of each Flow𝑖 (𝑖 = 1, 2) follow the same
conditional distribution 𝑃[𝑥 < 𝛿 | Flow𝑖] = 𝛿/𝑅𝑎 for any
𝛿 ∈ [0, 𝑅𝑎]. Then the applied TVF transforms the rate sample
distribution to a PV distribution. In this case, if the TA’s
throughput is cut at, e.g., 7.5Mbps, 50% of the packets of
both flows are dropped since 50% of them have packet values
less than 𝑉𝑎 (7.5Mbps), resulting in the same drop ratio for
the two flows.

The strict priority scheduling can be emulated in the packet
marker by assigning packet values in order to the flow priori-
ties as illustrated in Fig. 3b: the packets of Flow1 always have
higher priority than the ones of Flow2. In this case, we split
the packet value distribution of the TA 𝑎 into two parts: Flow1
gets packet values from range [𝑉𝑎 (𝑟1), 𝑉𝑎 (0)] while PVs in
Flow2 are chosen from the remaining range [𝑉𝑎 (𝑅𝑎), 𝑉𝑎 (𝑟1)]
(note: 𝑅𝑎 = 𝑟1 + 𝑟2 in the example). This value assignment
ensures that packets from Flow1 can only be dropped if all
the packets from Flow2 were dropped previously. The figure
depicts how this can be implemented in the PV marking: Flow1
chooses 𝑥 ∈ [0, 𝑟1] uniformly at random while Flow2 from
another range [𝑟1, 𝑅𝑎] to calculate the packet value 𝑣 = 𝑉𝑎 (𝑥).
The resulting packet value distribution of the TA remains the

same since the joint rate distribution of the resulted per-flow
conditional distributions remains uniform for any 𝛿 ∈ [0, 𝑅𝑎]
(note: 𝑃[Flow𝑖] = 𝑟𝑖/𝑅𝑎):

𝑃[𝑥 < 𝛿 | Flow1] =
{

𝛿
𝑟1
, if 𝛿 ≤ 𝑟1

1, otherwise

𝑃[𝑥 < 𝛿 | Flow2] =
{

0, if 𝛿 ≤ 𝑟1
𝛿−𝑟1
𝑟2

, otherwise

Encoding weighted fair resource allocation into packet
values is more tricky. Fig. 3c depicts such a scenario for
two flows. The weights of Flow1 and Flow2 are set according
to a desired 2 : 1 share (𝑤1 = 2/3 and 𝑤2 = 1/3). First,
we compute the minimal throughput need ensuring that the
flow’s demand can fully be served according to its weight. For
example, Flow1 has a sending rate 5Mbps and a normalized
weight 2/3. Dividing the sending rate with the flow’s weight
results in a projected capacity 𝐶1 = 𝑟1/𝑤1 = 7.5𝑀𝑏𝑝𝑠. If the
outgoing link’s capacity is at least 𝐶1, the demand of Flow1
(𝑤1𝐶1 = 𝑟1) could fully be satisfied. Note that if the bottleneck
capacity is greater than 𝐶1, the flow will use less resource from
the bottleneck than its weighted share. Consequently, we first
take the flow with the smallest projected capacity – Flow1 in
our case – since 𝐶1 = 7.5Mbps and 𝐶2 = 30Mbps. 𝐶1 splits the
rate range into two parts: range 0 to 7.5Mbps is shared among
both flows, while the remaining range (7.5-15Mbps) is solely
used by Flow2. Similarly to the previous case, the packet value
distribution is generated by applying different marking for the
two flows: Flow1 and Flow2 choose 𝑥 ∈ [0, 𝑅𝑎] according to
the following conditional probabilities and calculate the packet
value 𝑣 = 𝑉𝑎 (𝑥) as previously (𝛿 ∈ [0, 𝑅𝑎]):

𝑃[𝑥 < 𝛿 | Flow1] =
{

𝛿
𝐶1
, if 𝛿 ≤ 𝐶1

1, otherwise

𝑃[𝑥 < 𝛿 | Flow2] =
{

𝛿
𝐶2
, if 𝛿 ≤ 𝐶1

𝛿−𝑟1
𝑟2

, otherwise

Note that the joint distribution for the TA is uniform in
the range [0, 𝑅𝑎] and the resulting PV distribution is identical
with the expected PV distribution of TA as shown in the first
case. Since the expected PV distribution is derived from a
uniform random rate distribution by transforming rate values

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2022.3152017

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.



SUBMITTED TO IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT 6

into PVs via the TVF, the differentiation between the flows can
be implemented by the throughput transformations depicted
in Fig. 3c. As mentioned previously, the first range is shared
between the two flows according to their weights; in this ex-
ample 𝑤1𝐶1 from Flow1’s total throughput 𝑟1 and 𝑤2𝐶1 from
Flow2’s throughput 𝑟2 are transformed into the range [0, 𝐶1],
covering it uniformly at random. Since 𝑤1𝐶1 = 𝑟1, Flow1’s
demand is fully served in the first region, and 𝑤2𝐶1 ≤ 𝑟2
from the total demand of Flow2. The second region [𝐶1, 𝑅𝑎]
is solely used by Flow2, namely the remaining 𝑟2−𝑤2𝐶1 from
its total throughput need is mapped into this range uniformly
at random.

IV. HIERARCHICAL MARKER DESIGN

In the previous section, we have shown two basic examples
on how strict priority (SP) and weighted fair (WF) resource
sharing can be implemented in packet value marking by
splitting the expected PV distribution into per-flow conditional
components. A complex HQoS policy can be described as a
multi-level tree built from SP and WF nodes as depicted in
Fig. 4a. In this example, the TA consists of six flows: on the
first level, Flow 2 and 3 share the resources according to a
WF policy (denoted by WF(1) ), while there is also weighted
fair scheduling between Flow 4, 5 and 6 (see WF(2) ). On the
second level, we apply SP scheduling between Flow 1 and
the flow mix of WF(1) (aggregated traffic of Flow 2 and 3).
Finally, on the third level another WF scheduling (WF(4) ) is
implemented between the flow mixes of SP(3) and WF(2) .

As shown in the previous section, we assume strictly mono-
tone decreasing TVFs and thus both SP and WF scheduling
can be implemented by remapping input rate distributions to
a uniform rate distribution over the aggregated throughput
range of the inputs. It means that these policy components
apply various rate transformations on per-flow rate samples
to express the required resource sharing behavior between the
flows.

At the top level of the hierarchy, the applied TVF itself adds
an additional hierarchy layer as described in Sec. III-A. This
enables the distribution of packet marking. For example, the
packet markers of each subscriber in Sec. VII operate inde-
pendently from each other, including the DeepQoS marker of
the selected household. Additional distribution of marking can
be achieved by combining DeepQoS with the PV-remarking
concept of HPPV [21]. HPPV enables to add a new hierarchy
layer to an already marked packet TA. The HPPV marker
does not need any other information than the incoming Packet
Values and the new TVF to be applied.

A. SP Marking

The strict priority marking concept mentioned in the pre-
vious section can easily be extended for arbitrary number
of flows. Assuming 𝑛 flows 𝐹𝑙𝑜𝑤1, ..., 𝐹𝑙𝑜𝑤𝑛 with flow
rates 𝑟1, ..., 𝑟𝑛 and priorities 𝑝1 > 𝑝2 > · · · > 𝑝𝑛, for the
incoming packet stream SP marker generates a sequence of
random samples from [0, 𝑅] chosen uniformly at random,
where 𝑅 =

∑𝑛
𝑖=1 𝑟𝑖 . SP marker splits the throughput range into

𝑛 disjoint sub-ranges and each flow chooses a sample from its

sub-range uniformly at random. For the 𝑖th flow, 𝑥 is chosen
from [∑𝑖−1

𝑘=1 𝑟𝑘 ,
∑𝑖

𝑘=1 𝑟𝑘], ensuring that the samples of a flow
will always be smaller than the samples of other flows with
lower priorities.

B. WF Marking

Fig. 5 depicts a more complex example on how throughput
samples of flows in a given traffic aggregate are remapped
according to weighted fair resource sharing. The TA consists
of three flows, i.e., Flow1 (orange), Flow2 (red) and Flow3
(yellow) with arrival rates 6, 2, and 4 Mbps, resp. The weights
of the three flows are 2, 1, 1, i.e., Flow1 shall have twice as
many resources as the others while Flow2 and Flow3 share
the resources equally. Our goal is to determine the conditional
rate distribution for each flows so that they jointly result in a
uniform rate distribution in the range of 0 to 12 = 6+2+4 Mbps
on which the operator policy (TVF) is applied. We first rank
the flows according to their projected capacity. This can be
calculated by dividing each flow rate by its normalized weight.
According to the ranking, the second flow (red) is the first
because it uses less than its weighted share from the bottleneck
capacity. Then comes the first flow (orange), getting exactly
as much as it deserves and finally there is the third flow
(yellow) at the end that uses more than its weighted share.
As seen in Sec. III, Flow2 having the smallest projected
capacity determines the first throughput range that is between
0 and 8 Mbps that is shared among all the three flows. Their
contributions can be calculated by multiplying the normalized
flow weights with the length of the range. Accordingly, Flow1,
Flow2 and Flow3 contribute 4 = 8 ∗ 0.5, 2 = 8 ∗ 0.25 and
2 = 8 ∗ 0.25, resp. One can observe that the demand of
Flow2 (red) is fully covered by the first range. In the second
range, we continue with the other two flows whose remaining
throughput needs are 6 − 4 = 2 Mbps and 4 − 2 = 2 Mbps
(for Flow1 and Flow3, resp.). Since the second range is only
shared by two flows with weights 2 and 1, the normalized
weights need to be recalculated (2/3 and 1/3) and applied.
The second flow according to the ordering is Flow1 where the
remaining throughput is 2 Mbps and its recomputed projected
capacity is 2/(2/3) = 3 Mbps that is the length of the second
throughput range between 8 and 11 Mbps. The contributions
of Flow1 and Flow3 in this range are 3× (2/3) = 2 Mbps and
3 × (1/3) = 1 Mbps, resp. One can note that the throughput
needs of Flow1 are fully covered by the first two ranges.
Thus, the third range is solely used by Flow3. Its remaining
throughput need is 4 − 2 − 1 = 1 Mbps that is represented by
the last range between 11 and 12 Mbps. One can observe in
Fig. 5-(4.) that for each flow its contributions in various ranges
determine the conditional probability distribution to be used
for choosing rate samples for packet marking. For example,
Flow1 (orange) assigns 4 Mbps to the first range, 2 Mbps to
the second, and nothing to the third from its total throughput
need of 6 Mbps. Accordingly, 4/6 = 2/3 of the packets gets
a throughput sample from the first range while 2/6 = 1/3 of
them from the second range. The samples within the ranges
are chosen uniformly at random.

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2022.3152017

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.



SUBMITTED TO IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT 7

W
F

(1
)

W
F

(2
)

S
P

(3
)

W
F

(4
)

W
(1)

1

W
(1)

2

W
(2)

1

W
(2)

2

W
(2)

3

1

2

W
(4)

1

W
(4)

2

S
u

b
flo

w
 id

e
n

tific
a

tio
n

 (i=
3

)

1

2

3

4

5

6

(a) Traditional HQoS.

r V�WF-Mark
(1)

(r, i
(1)

)

r V�WF-Mark
(2)

(r, i
(2)

)

r V�WF-Mark
(4)

(r, i
(4)

)

r V�SP-Mark
(3)

(r, i
(3)

)

TVFp(r)

Packet

Value

i=1

i=2

i=3
2

2

1

1

2

3

1

1

2

i=4

i=5

i=6

S
u

b
flo

w
 id

e
n

tifica
tio

n
 (i=

3
)

r V
�R

A
N

D
O

M
(0

,S
i )

(b) HQoS Packet Marker.

Fig. 4. In Traditional HQoS, packets are directed through a hierarchy of physical buffers. In HQoS marker, HQoS policies are encoded as a sequence of rate
transformations. The marker translates the HQoS policy into a single packet value

FLOW 

Thr 

4 

2 

6 

2 
1 

1 
Weights: 

4 / 0.25 = 16 

2/0.25 =8 

6 / 0.5 = 12 

Thr 

2 

2 

4 

1 

2 

1 

R1 = 8 

R2 = 11 
R3 = 12 

8   3               1 

2 
1 

1 

2 

1 
1 

<           < 12 8 16 1. 2. 

3. 

4. 

2 = 8*0.25 
1 = 

(1/3)*3 

Thr 

2 = 8*0.25 

4 = 8*0.5 

2 = 

(2/3)*3 

1 

8 11 12 

R3 R2 R1 

Fig. 5. WF marking example with three flows

1 

2 

Thr 

2 

3 5 

R2 R1 WF(1) 

2 1 Thr 

2 

4  
2 

1 

8 11 12 

R3 R2 R1 WF(2) 

1 

2 
2 

5 

Thr 5 10 

R2 R1 
SP(3) 

5 5 

SP(3) 

Thr 5 10 

R2 R1 

WF(4) 

Thr 18 22 

R2 R1 

12 

6 

4 a. 

b. 

1 

r:5 
w:pri 

4 

r:6 

w:2 

5 

r:2 

w:1 

6 

r:4 

w:1 

2 

r:2 

w:2 

3 

r:3 

w:1 

WF(4) 

2/3 
2/3 

Thr 18 22 

R2 R1 

1 

2 1 

2 

4  
2 

5 

2 

4/3 

1/3 

20 16,5 

15 

12 

Fig. 6. HQoS graph example with six flows

C. HQoS graph

Fig. 6 depicts an example on how the complex HQoS policy
shown in Fig. 4a is implemented by the PV marking algorithm.
There are six flows in the given TA: the previously presented
three flows (4-orange, 5-red and 6-yellow) with WF scheduling
are depicted in the upper left corner (WF(2) as in Fig. 5)
and there are three more flows (1-green, 2-blue and 3-purple)
with sending rates of 5, 2, and 3 Mbps, resp. Flow 2 and
3 (blue and purple) are connected to a WF component with
weights 2 and 1, resp. The calculated conditional distributions
𝑃𝑊𝐹 (1) [𝑥 < 𝛿 | Flow𝑖] (𝑖 = 1, 2) are presented in the right
upper corner (WF(1)). Note that the expected outgoing rate

distribution of WF(1) is a uniform distribution in the range of
0 to 5Mbps. The output of this WF component is connected
to an SP component. SP(3) defines a strict priority scheduling
between the green flow and the aggregated traffic of blue and
purple flows. The green flow with sending rate of 5Mbps has
higher priority than the flow aggregate (blue and purple). The
aggregated throughput of the blue and purple flows is also 5
Mbps. One can also observe in the right gray box (b.) that
the range between 0 and 5Mbps is solely used by the green
flow while the remaining range is shared between the blue
and purple according to the per-flow distributions of WF(1).
SP(3) also defines different conditional rate distributions for
the two inputs according to the strict priority rule. However, its
second input is a flow aggregate (WF(1)) of Flow 2 and 3 (blue
and purple), and thus its conditional distribution 𝑃𝑆𝑃 (1) [𝑥 <

𝛿 | ∀Flow ∈ WF(1)] (𝛿 ∈ [5, 10Mbps]) can also be described
as the joint distribution of conditional distributions of Flow
2 and 3 from the previous layer. Then WF(2) and SP(3) are
used as inputs in WF(4) with weights 2 and 1, resp. This
situation is the same as having 2 input flows with sending rates
of 12 Mbps (red-orange-yellow) and 10 Mbps (blue-purple-
green) as depicted in the left gray box (a.). Replacing these
two areas with the previously computed distributions, we get
the final distribution (WF(4)) on the bottom where each flow
is represented. The subfigure shows the contribution of each
flow in the different disjoint throughput ranges that are taken
into account during the PV marking.

V. DEEPQOS MARKER IMPLEMENTATION

To express complex HQoS policies, DeepQoS Marker is
built from WF and SP components connected as a directed
acyclic graph as shown in Fig. 4. As shown previously, such
a HQoS policy can be implemented by applying different
per-flow conditional distributions during the PV marking.
This section focuses on practical algorithms that satisfy the
previously defined requirements on the resulted rate and PV
distributions.

First, we define the building components (WF and SP) of the
proposed DeepQoS method. Each of them is responsible for
modeling the scheduling among multiple input flows (simply
called as inputs). When a packet of input flow 𝑙 arrives, we
choose a rate sample 𝑟𝑖𝑛 from 0 to the current arrival rate
of input 𝑙 uniformly at random. Then a DeepQoS component
transforms 𝑟𝑖𝑛 into the aggregated throughput range (sum of
the input arrival rates) so that the transformed rate values 𝑟𝑜𝑢𝑡

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2022.3152017

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.



SUBMITTED TO IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT 8

follow the conditional distribution 𝑃[𝑟𝑜𝑢𝑡 < 𝛿 | Flow𝑙] while
the joint output distribution for all inputs of the component
results in a uniform distribution in the range from 0 to the
sum of input arrival rates. This requirement is needed for that
the PV distribution of the TA remains the same and thus the
resource sharing properties of the original PPV concept still
hold. The theoretical analysis of DeepQoS can be found in
Appendix A and B.

A. WF Component

WF component implements a weighted fair resource sharing
policy between a number of flows. It contains two key mech-
anisms: 1) An updating algorithm that periodically refreshes
the per-flow rate measurements and the related variables (e.g.,
projected capacities, flow ranks and order) needed for the
marking phase; and 2) A WF marking algorithm that trans-
forms a rate sample 𝑟𝑖𝑛 ∈ [0, 𝑆𝑙] of input 𝑙 into a rate value in
the entire throughput range of the aggregate [0,∑𝑛

𝑘=0 𝑆𝑘] so
that it generates the desired PV distribution presented in the
previous section.
WF-Updating algorithm: Algorithm 1 receives new per-
flow rate measurements and updates the internal variables
accordingly. It first determines a new indexing 𝑜𝑖 such that
the re-indexed input flows have increasing projected capacities
(line 2-3). Then as it is shown in Fig. 5 the throughput
range is split into several regions and the number of subflows
sharing the same range is decreasing as moving away from
the origin. The normalized weights 𝑊 𝑗 ,𝑖 in each region 𝑗

are calculated in lines 7-9 by normalizing the weights for
the flows 𝑜𝑖 ( 𝑗 ≤ 𝑖) present in that region. Then the length
of throughput ranges (𝛿 𝑗 ) and the region boundaries for the
aggregate (𝑅 𝑗 ) are calculated. For each flow 𝑜𝑖 , we also split
the flow’s throughput range into smaller regions 𝑅 𝑗 ,𝑖 ( 𝑗 < 𝑖)
where the length of 𝑅 𝑗 ,𝑖 represents the throughput contribution
of flow 𝑜𝑖 in the aggregated range 𝑅 𝑗 (see line 13-14). Note
that according to the above definition the last range ends at
𝑅𝑛 =

∑𝑛
𝑙=1 𝑆𝑙 . Also the number of flows in each TVF region is

decreasing, because, e.g., flow 𝑜1 uses the least of its allocated
fair share therefore its throughput need fully fits into the first
range. In general, flow 𝑜 𝑗 can completely be represented in
the first 𝑗 regions.

Note that the updating algorithm needs to be executed peri-
odically to get accurate rate sample distributions. Between two
updates the method assumes a steady state. In our performance
evaluation, we set the update period to 5 ms. The calculations
can be done on a separate thread (e.g., in DPDK) or in the
control plane, and thus it does not delay the packet processing
on the fast path.
WF-Marking algorithm: Upon the arrival of a packet from
input flow 𝑙, the marking algorithm first determines a rate
sample 𝑟𝑖𝑛 chosen uniformly at random from range [0, 𝑆𝑙].
Algorithm 2 then remaps the flow index into the ordered index
𝑖 so that 𝑜𝑖 = 𝑙 (line 2). For flow 𝑜𝑖 , the 𝑅 𝑗 ,𝑖 (0 < 𝑗 ≤ 𝑖) values
split the throughput range [0, 𝑆𝑜𝑖 ] into 𝑖 ranges whose length
defines the throughput contribution of flow 𝑜𝑖 in the aggregated
throughput range 𝑅 𝑗 . Note that 𝑅𝑖,𝑖 = 𝑆𝑜𝑖 by definition. Based
on the relation of 𝑟𝑖𝑛 and the 𝑅 𝑗 ,𝑖 values the relevant rate

Algorithm 1: WF-Updating
Input : Rate measurements for each input: 𝑆1, ..., 𝑆𝑛

1 begin
2 Calculate ordered-indexing: 𝑜1, ..., 𝑜𝑛;
3 Note: 𝑆𝑜𝑖/𝑤𝑜𝑖 ≤ 𝑆𝑜 𝑗

/𝑤𝑜 𝑗
, (𝑖 < 𝑗)∀𝑖, 𝑗 ∈ [0, 𝑛];

4 𝑅0 ← 0;
5 for 𝑖 ← 1 to 𝑛 do
6 𝑅0,𝑖 ← 0;

7 for 𝑗 ← 1 to 𝑛 do
8 for 𝑖 ← 𝑗 to 𝑛 do
9 𝑊 𝑗 ,𝑖 ← 𝑤𝑜𝑖/

∑𝑛
𝑘= 𝑗 𝑤𝑜𝑘

;

10 for 𝑗 ← 1 to 𝑛 do
11 𝛿 𝑗 ← (𝑆𝑜 𝑗

− 𝑅 𝑗−1, 𝑗 )/𝑊 𝑗 , 𝑗 ;
12 𝑅 𝑗 ← 𝑅 𝑗−1 + 𝛿 𝑗 ;
13 for 𝑖 ← 𝑗 to 𝑛 do
14 𝑅 𝑗 ,𝑖 ← 𝑅 𝑗−1,𝑖 + 𝛿 𝑗 ×𝑊 𝑗 ,𝑖;

region ( 𝑗) is determined (line 3). Transformed rate sample 𝑟𝑜𝑢𝑡
is determined in line 4, by applying the normalized weight 𝑊 𝑗 ,𝑖

to the portion of the 𝑟𝑖𝑛 represented in rate region 𝑗 , i.e., the
throughput contribution in range 𝑗 which is 𝑟𝑖𝑛 − 𝑅 𝑗−1,𝑖 .

Algorithm 2: WF-Marking
Input : Input index 𝑙 ∈ [1, 𝑛]

Rate sample parameter 𝑟𝑖𝑛 ∈ [0, 𝑆𝑙]
Output: Transformed rate 𝑟𝑜𝑢𝑡 ∈ [0,

∑𝑛
𝑘=1 𝑆𝑘]

1 begin
2 Find 𝑖 ∈ [1, 𝑛] so that 𝑜𝑖 = 𝑙;
3 Find 𝑗 ∈ [1, 𝑖] so that 𝑅 𝑗−1,𝑖 < 𝑟𝑖𝑛 ≤ 𝑅 𝑗 ,𝑖;
4 𝑟𝑜𝑢𝑡 ← 𝑅 𝑗−1 + (𝑟𝑖𝑛 − 𝑅 𝑗−1,𝑖)/𝑊 𝑗 ,𝑖;
5 Return 𝑟𝑜𝑢𝑡 ;

B. SP Component
Strict priority resource sharing policy between a number of

flows can be implemented similarly to a WF Component. It
also consists of an updating and a marking algorithm.
SP-Updating algorithm: Algorithm 3 is used to compute rate
boundaries in the aggregate throughput range according to the
flow priorities and the new rate measurements. As shown in
Sec. IV-A, rate values of flow 𝑖 are remapped to the range of
[𝐿𝑖−1, 𝐿𝑖] where the interval length is exactly the flow rate 𝑆𝑖 .
𝐿𝑖 is used as an offset during the marking phase to accelerate
the computations. These ranges are organized in increasing
order of flow priorities.
SP-Marking algorithm: Algorithm 4 describes the marking
algorithm modeling a strict priority policy. Upon arrival of a
packet from flow 𝑙, it simply offsets input rate sample 𝑟𝑖𝑛 ∈
[0, 𝑆𝑙] into the [𝐿𝑖−1, 𝐿𝑖] range (line 2).

C. DeepQoS Marking Graph
The previously introduced WF and SP marker components

can be organized into a hierarchy. They hold the property

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2022.3152017

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.



SUBMITTED TO IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT 9

Algorithm 3: SP-Updating
Input : Rate measurements for each input: 𝑆1, ..., 𝑆𝑛

1 begin
2 Note: indexes reflect the priority order;
3 𝐿0 ← 0;
4 for 𝑖 ← 1 to 𝑛 − 1 do
5 𝐿𝑖 ← 𝐿𝑖−1 + 𝑆𝑖;

Algorithm 4: SP-Marking
Input : Input index 𝑖 ∈ [1, 𝑛] (priority order)

Rate sample parameter 𝑟𝑖𝑛 ∈ [0, 𝑆𝑖]
Output: Transformed rate 𝑟𝑜𝑢𝑡 ∈ [0,

∑𝑛
𝑘=1 𝑆𝑘]

1 begin
2 𝑟𝑜𝑢𝑡 ← 𝐿𝑖−1 + 𝑟𝑖𝑛;
3 Return 𝑟𝑜𝑢𝑡 ;

that for a traffic mix with 𝑛 inputs where 𝑃[Flow𝑖] is the
probability that the packet to be marked belongs to input 𝑖 and
the input rate sample 𝑟𝑖𝑛 for each input 𝑖 is chosen uniformly
at random from [0, 𝑆𝑖], the output rates of both WF or SP
components follow a uniform distribution over the aggregated
throughput range [0,∑𝑛

𝑘=1 𝑆𝑘]. Note that an input can either be
a single flow or a flow aggregate (traffic of multiple flows in
the TA) joined according to a previous WF or SP component
in the hierarchy.

In our model, HQoS policies can be described as a marker-
graph. Let the marker-graph be a directed acyclic graph 𝐺 =

(𝑉, 𝐸) where 𝑉 consists of marker (rate transformation) nodes
(WF or SP), a designated starting and ending nodes.

Fig. 4 depicts an example for a traditional HQoS scheduler
and its analogous HQoS marker graph. When comparing the
two, it is visible that the connections in the traditional HQoS
scheduler are represented by the connections in the marker
graph. The red components and arrows in both figures show
the path of a packet belonging to Flow 3 as an example.
DeepQoS packet marking starts with identifying the flow (𝑖)
the packet belongs to. Then a rate sample 𝑟 ∈ [0, 𝑆𝑖] is chosen
uniformly at random. This rate sample is transformed (one or
more times) by routing through a sequence of WF and SP
marker nodes in the graph until the TVF node is reached and
the packet value is determined. Note that the top level policy in
the hierarchy is expressed by the TVF and ensures the resource
sharing between TAs. Green arrows show how 𝑟 is repeatedly
transformed for Flow 3, and purple arrows illustrate how the
local index 𝑖 (𝑥) is determined according to the flow mix of the
local inputs.

Algorithm 5 formalizes this description. 𝑚, 𝑖 (𝑚) indicate the
𝑚th node of the graph, reached in the 𝑖 (𝑚) th input port. adj
function determines the next node in the graph (i.e., where the
outgoing arrow points to). In line 4, the algorithm chooses the
𝑖th outgoing edge from the starter node, while in line 7 the
adjacent node of each marker node is unique. apply represents
the application of the given WF or SP component’s marking

algorithm. Finally, 𝑉 (.) is a TVF implementing the top-level
resource sharing policy between the TAs.

Algorithm 5: HQoS packet marking algorithm.
Input : Flow index 𝑖 in the TA

Marker-graph 𝐺 (𝑉, 𝐸)
Operator policy of the TA as TVF 𝑉 (.)

Output: Packet value 𝑣

1 begin
2 Let 𝑠 ∈ 𝑉 be the starting node;
3 𝑟 ← random(0, 𝑆𝑖);
4 𝑚, 𝑖 (𝑚) ← adj(𝑠, 𝑖);
5 while 𝑚 is not the ending node do
6 𝑟 ← apply(𝑚, 𝑖 (𝑚) , 𝑟);
7 𝑚, 𝑖 (𝑚) ← adj(𝑚);
8 𝑣 = 𝑉 (𝑟);
9 Return 𝑣;

VI. SCHEDULER - P4 IMPLEMENTATION OF
VDQ-CSAQM

DeepQoS marking could be used with any PPV-aware
scheduler since the PV distribution of each TA remains the
same as with the original PPV marking algorithm. The ap-
plied HQoS hierarchy is fully represented by the DeepQoS
marking. The scheduler itself is fully unaware of the used
HQoS policies, the number of hierarchy levels, the number of
flows and the traffic aggregates. To demonstrate the simplicity
and versatility of the system we adapted the L4S-capable
VDQ-CSAQM [3] scheduling algorithm to a Tofino-based
P4 programmable switch. As an orthogonal requirement to
controlling resource sharing, this scheduler can differentiate
between L4S and Classic Internet services, providing ultra-
low queueing delay for L4S and higher delay for Classic traffic
classes in the same system. Note that the VDQ-CSAQM al-
gorithm was originally implemented in DPDK and performed
computations on the fast path that proved to be too complex
for today’s programmable switches. To find a good trade-
off between performance and small data plane complexity,
we redesigned the VDQ-CSAQM algorithm by distributing
computations between data and control planes as depicted in
Fig. 7.

A. Data Plane (DP) Pipeline

The main goal of our architecture design is to simplify the
per-packet operations in the P4 pipeline as much as possible.
As in the original design of VDQ-CSAQM [3], for each
egress port two physical queues are configured with strict
priority scheduling between them. The L4S queue (Queue
0) has higher priority than the Classic one (Queue 1). Non-
ECT packets with packet value less than 𝐶𝑇𝑉𝑖 (Congestion
Threshold Value) are dropped in the ingress pipeline before
queueing, while ECN CE marking happens at the egress side,
based on the same 𝐶𝑇𝑉𝑖 values. We have replaced Virtual
Queues (VQs) of the original algorithm with two groups

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2022.3152017

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.



SUBMITTED TO IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT 10

Queue 0 (L4S)
C

arrivedBytes1

PvArrived1[PV]

Queue 1 (Classic)

C
T

V
1

m
a
rk

arrivedBytes0

PvArrived0[PV]

C
T

V
1

d
ro

p

C
T

V
0

m
a
rk

P4 Data Plane

C++ Control Plane

Digest (8ms):

arrivedBytes

Sync (50ms):

PVarrived

Set (8ms): 

CTVs 

Calculate Histograms (every 50ms)

Maintain Virtual Queues (VQs) (every 8ms)

Determine Congestion Threshold Values (CTVs)

L4S 

flows

Classic 

flows

C
T

V
0

d
ro

p

Fig. 7. Data and control plane design of VDQ-CSAQM

of counters (counter overflow is allowed): arrivedBytes𝑖 (4
bytes) counts the amount of bytes arrived at Queue 𝑖, while
PvArrived𝑖[PV] (4 bytes/PV) counts the bytes carried in the
packets with a given PV that arrived at Queue 𝑖. All counters
are defined for each queue of each PPV-enabled egress port,
data aggregation happens in the CP. The PV is encoded into
1024 different values (i.e., 10 bits) logarithmically which
corresponds to a resource sharing precision of 3% in the range
of 10 Kbps to 1 Tbps. Each queue shares the same buffer
area of the switch. Note that today’s programmable switches
have been designed for use cases where deep buffers are not
required, posing additional challenges to keep the control at
AQM algorithms instead of experiencing random packet drops.
At the typical capacity of 10 Gbps we use in the evaluation,
this means 17.6 ms buffer space in total shared among all
the egress ports. Note that programmable switches for other
business cases (e.g., AANs) requiring deeper buffers could
potentially be developed in the future.

Though all the necessary steps of the algorithm could be
implemented in the ingress pipeline, for practical considera-
tions we have split it into ingress and egress parts. With this
design the pipeline requires only 3 stages at both ingress and
egress parts, allowing the coexistence of the scheduler with
other functions like switching, routing or even complex 5G
User Plane Function. At ingress side, the CTV-based packet
dropping is implemented by a match-action table with entries
for each PPV-enabled egress port and traffic class (either L4S
or Classic). This table is quite small, requiring only two entries
per physical port. Then, the queue identifier is set according to
the traffic class the packet belongs to. Finally, arrivedBytes𝑖s
are also counted at the ingress block, implemented by registers
since their values need to be sent to the control plane in digest
messages. Packet marking with ECN-CE has been moved
to the egress block, implemented by a similar lookup table
as packet dropping at ingress. The packet value histograms
PvArrived𝑖 are realized as counter arrays indexed by packet
values (0-1023). Note that for each PPV-enabled port two such

histograms need to be maintained which results in ≈ 8KBytes
SRAM usage per port. In most traditional networking use
cases the majority of packet processing logic is implemented
at the ingress pipeline. The proposed pipeline also requires
some computations at the ingress part but the majority of
the logic is implemented at the egress, allowing the seam-
less co-existence of PPV-based scheduling with other packet
processing pipelines (e.g., routing, 5G User Plane Functions,
etc.). The CTV values in both ingress and egress parts are
periodically updated by the control plane.

B. Control Plane (CP) process

To keep the data plane (DP) implementation lightweight, the
complex computations of VDQ-CSAQM have been moved to
a local control plane (CP) process running on the CPU of the
switch. The CP written in C++ relies on the native Barefoot
Runtime API that enables fast interaction with the data plane
objects. It has three key roles: 1) maintaining VQ states, 2)
updating PV histograms and 3) calculating CTV values to be
applied in the DP.

DP sends the current values of registers arrivedBytes𝑖 as
a digest message to the CP in every 8 ms. From the digest
message and the values received in the previous iteration, the
CP calculates the bytes received within the update interval.
Then the state of each VQ is updated according to the
calculated incoming bytes, its virtual service rate and the
elapsed time since the last update. The virtual service rates of
the VQs are set relative to the link capacity (𝐶): 𝐶𝑣0 = 0.9𝐶
and 𝐶𝑣1 = 0.98𝐶. Coupling of the two VQs is implemented in
the CP by considering the incoming bytes of both queues for
Queue 1 (i.e., the low priority queue used for Classic traffic).
Thereby we emulate coupling behavior of [3], where packets
arriving to Queue 0 are also taken into account in 𝑉𝑄1.

The CP syncs PvArrived𝑖 counters from the DP in every
50 ms that are used to calculate the Packet Value histograms
for both queues. Since we use circular counters, the histogram
can be computed by taking the difference of the new and
previous values for each counter index. Similarly to VQs, the
histogram of Classic traffic class is coupled, representing the
PV distribution of both L4S and Classic packets. Note that
though arrivedBytes𝑖 can be calculated from PvArrived𝑖 , we
maintain it separately to optimize the DP-CP communication.
To get stable and more representative PV histograms, a longer
measurement period is needed while faster control can only
be ensured by updating VQ states (and thus CTVs) more
frequently.

The desired packet marking/dropping probability (𝑞𝑖) is then
calculated from the VQ lengths and predefined target queue
sizes. At this point, we deviates from the original design
of [3], since programmable switches only have a shallow
buffer area. It simply makes the large VQ target of 20 ms
(Classic) impossible and the temporal packet bursts in transient
states lead to unexpected packet losses (not the ones with low
PVs) in the traffic management engine of the switch, taking
control from VDQ-CSAQM algorithm in the background. We
carried out number of experiments with the original algorithm
and smaller targets, but it led to unstable behavior. Instead,

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2022.3152017

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.



SUBMITTED TO IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT 11

Fig. 8. Testbed

we extended the original algorithm with a RED-like [28]
mechanism to calculate the dropping/marking probabilities
𝑞𝑖 for each VQ, based on its instantaneous VQ length. We
calculate 𝑞𝑖 = max

(
0,min

(
0.75, 𝑉𝑄𝑖−𝑣𝑞𝑇ℎ𝑖

6·𝑣𝑞𝑇ℎ𝑖

))
, where the VQ

thresholds are set to 𝑣𝑞𝑇ℎ0 = 0.5 ms and 𝑣𝑞𝑇ℎ1 = 1 ms. The
packet value thresholds 𝐶𝑇𝑉𝑖 are then calculated to define the
𝑞𝑖 percentile least important bytes in the PV histogram 𝐻𝑖:
𝐶𝑇𝑉𝑖 = argmin𝑣

∑𝑣
𝑗=1 𝐻𝑖 [ 𝑗] ≥ 𝑞𝑖 ×

∑1023
𝑘=0 𝐻𝑖 [𝑘]. Finally, the

CP updates the match-action tables implementing CTV-based
dropping and ECN-marking with the new CTV values.

a) Notes on CTV update times.: The Classic and L4S
CTVs are used to generate congestion signals to the end-hosts.
Congestion control is acknowledgment-clocked and thus the
CTV needs to be controlled at the same timescale as the RTT.
The CTV update is triggered by the DP. It encapsulates the
VQ states into a digest message, and sends it to the CP in
every 8ms. The CP recalculates the CTVs and updates the
appropriate table entries in the DP. The time between generat-
ing the digest and finishing the table entry updates is approx.
2ms, giving enough time between two digest generation to
see the effect of the modified settings. The PV histograms are
collected in counter arrays that are synched in every 50ms.
Reading and processing counter values take approx. 25ms in
our CP implementation. We decided to keep it at 50ms to have
stable packet value distributions needed for deriving the CTVs.
Though these settings work well in the scenarios presented in
Sec. VII, environments with small RTTs and much smaller
target delays may require a faster control loop, resulting in
additional challenges for future programmable data planes.

VII. EVALUATION

Our performance evaluation to be presented in this section
relies on the P4 implementation of VDQ-CSAQM run on
a Delta AG9064v1 P4-programmable hardware switch and
the DPDK-based implementation of the proposed DeepQoS
marker deployed in a designated server machine. These nodes
are connected in a chain topology between a traffic generator
and a sink machine as shown in Fig. 8. The configuration
of the three servers is identical (Xeon E5-1660 v4@3.2GHz
CPU, with 64Gb RAM and Intel XL710 40GbE Ethernet NIC).
The servers’ operating system is Ubuntu Server 18.04 with the
TCP Prague linux kernel patch (version 5.4.0-rc3) [29]. The

accurate ECN [30] feature needed for the correct operation
of TCP Prague has also been enabled. We have to note that
the RTT Scaling mechanism of TCP Prague has been disabled
during our measurements since it proved to be incompatible
with shallow buffers of programmable switches, leading to
significant underutilization of the bottleneck link.

The test traffic (both TCP and UDP) was generated by the
iperf2 tool where the applied Congestion Control Algorithm
(CCA) was varied, using TCP Cubic as classic and TCP
Prague as scalable CCA. Different propagation RTTs were em-
ulated by delaying the TCP acknowledgments at the sink side,
using the tc netem tool. The bottleneck between the switch
and sink nodes was created by rate limiting the appropriate
egress port of the P4 switch. In most scenarios, the bottleneck
capacity was set to 10 Gbps. In all the evaluation measure-
ments, the same VDQ-CSAQM and marker parameters were
used. The averaging timescale in the rate measurements of the
packet marker was set to 40ms (as described in [27], Sec. IV-
A) and the internal states of DeepQoS marking components
were updated in every 5ms.

Table I shows the labels of the six flow types (flows with
different CCA and RTT parameters) we use in the evaluation.
In most evaluation scenarios two flow types are considered in
the same system while the total number of flows from each
type are varied from 2 to 200. Either Gold or Silver research
sharing policies are applied for the flows with different types.
We use the TVFs as defined in Fig. 2. To show the resource

TABLE I
FLOW TYPES USED IN THE EVALUATION

Flow parameters Flow type labels
CCA RTT Gold TVF Silver TVF
Cubic 5 ms “G5” “S5”
Cubic 40 ms “G40” “S40”
Cubic 0.3 ms “G.3” “S.3”
Cubic 0.7 ms “G.7” “S.7”
Prague 5 ms “Gp” “Sp”
Prague 40 ms “Gp40” “Sp40”

sharing accuracy of DeepQoS marking we often select a
designated TA called household (“HH” label in the figures) and
depict how its flows share the available resources according
to the defined HQoS policy.

A. Dynamic scenarios without HQoS

The first set of evaluation scenarios investigates the perfor-
mance of our modified VDQ-CSAQM method implemented
in P4. To this end, in these simple use cases, we only assume
a number of subscribers having the same or different resource
sharing policies expressed as TVFs (Gold or Silver) and show
how the desired weighted fairness is guaranteed among them.
Note that in these scenarios uses the original PPV packet
marking algorithm [27] without its DeepQoS extension.

1) Data center environment with different RTTs: This eval-
uation scenario is similar to the one presented by Yu et al.
in their recent paper on HCSFQ (see Fig. 11 in [1]). We
use the same settings except that the bottleneck capacity
is 10Gbps (instead of 40Gbps). There are four TCP Cubic
flows in the system, arriving one after another as depicted

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2022.3152017

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.



SUBMITTED TO IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT 12

Fig. 9. HQoS WFQ example configuration

Fig. 10. FIFO, Data center env. with mixed RTTs

in Fig. 10 and 11. The first two flows entering at 0sec and
15s have 0.3ms RTT, while the RTT for the other two flows
starting at 30s and 45s is 0.7ms. As shown in Fig. 10, high
bandwidth fluctuation of the flows can be observed without
VDQ-CSAQM (considering a simple FIFO with tail dropping)
and a stable fair resource sharing is not achieved. However, in
Fig. 11 VDQ-CSAQM results in much better fairness and more
stable resource sharing with quicker convergence to the desired
rate. Note that VDQ-CSAQM applies the same policy (Gold
TVF) to all flows, representing a fair throughput allocation.
The observed efficiency and behavior is similar as for HCSFQ
(see Fig. 11b in [1]).

2) Fairness between Classic and Scalable flows: To ver-
ify how our VDQ-CSAQM implementation works with L4S
traffic, we have mixed classic (Cubic) and scalable (Prague)
TCP flows with various traffic intensities, but with the same
5ms RTT. Fig. 12 depicts the observed throughput of various

Fig. 11. VDQ-CSAQM, Data center env. with mixed RTTs

Fig. 12. Mixed classic and scalable TCP flows, 5 ms RTT

Fig. 13. Mix of classic and scalable TCP flows, 5 and 40 ms RTTs

number of Cubic (orange) and Prague (blue) flows that coexist
in the same network and use the same (Gold) policy. The
scenario starts with a single classic flow, then other flows enter
the system and/or terminate in every 20s. The figure depicts
the number of classic and scalable flows in the stable periods
(in this order). One can observe that a single classic flow (0-
20s) has a slow convergence time and cannot fully utilize the
available capacity. As the number of flows becomes larger, the
fairness even between flows with different CCA is maintained
well and the per-flow throughput is close to the ideal (dashed
curve). It even holds when the difference between the number
of classic and scalable flows is large. One can also observe that
the throughput values of TCP Prague flows are slightly above
the calculated ideal and the curve of classic ones. Scalable
CCAs are more aggressive than loss-based classic methods,
and though VDQ-CSAQM provides in-network support for
classic flows to increase their sending rates faster, the classic
TCP behavior remains the same and the unused capacity is
immediately occupied by the scalable flows.

3) Classic and Scalable flows with different RTTs: In this
scenario, we examine how the resource sharing is affected by
heterogeneous RTTs which can happen over the Internet. We
consider both L4S and Classic flows with both 5ms and 40ms
RTTs. In contrast to other evaluation scenarios, the bottleneck
capacity is set to 1Gbps since with 10Gbps bottleneck speed
the utilization and adaptation speed of a small number of
flows with 40ms RTT have especially been affected by the
tiny buffers of the programmable switch. We believe that such
unfairness is acceptable at high speeds in systems with limited
flow counts. As shown later in this section, for larger number
of flows, even with 40ms RTT the fairness and convergence
time become much better.

Fig. 13 shows the scenario with flows from four different
flow types: 1 flow from each type are launched at the begin-
ning, at 20s 1 additional flow from each type joins, at 40s 3-3-
3-3, and at 60s 5-5-5-5 more flows start. The flows terminate

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2022.3152017

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.



SUBMITTED TO IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT 13

Fig. 14. Mix of classic and scalable TCP, gold and silver policies

in reverse order at 80s, 100s and 120s. Though the 40ms
flows converge somewhat slower (esp. for 1-1-1-1 and 2-2-2-2
cases), the obtained fairness still remains good. The throughput
curves are close to the ideal regardless of the number of flows.
Similarly to the previous case, L4S flows get somewhat more
throughput than Classic ones. In addition, RTT unfairness is
also visible, giving slightly higher throughput to flows with
5ms RTT in each CCA class. The P4 implementation of VDQ-
CSAQM results in similar behavior as the original algorithm
of [3].

4) Resource sharing policy enforcement: In addition to
equal sharing, PPV framework can express rich resource
sharing policies. In this scenario, one half of both classic and
scalable flows apply Silver policy, while the other half of them
are marked according to the Gold TVF, defining an expected
4:1 (G:S) resource share. The RTT is 5 ms for all flows and
the bottleneck capacity is 10Gbps. One can observe in Fig. 14
that the desired resource share is realized between the Gold
and Silver flows regardless of their CCA (classic or scalable).
Similarly to the previous cases, there are larger deviances from
the ideal if the number of flows are small, but as their counts
increase the throughput curves run close to the ideal, giving
slightly higher share to L4S flows within the policy classes.

B. Dynamic scenarios with HQoS

In this section, we focus on the performance of the proposed
DeepQoS marker. To this end, in each scenario we select a
designated user whose traffic aggregate consists of multiple
flows with a predefined HQoS policy among them. In addition
to aggregated throughput of end users, detailed measurement
results are separately presented for the designated user called
household (HH) traffic.

1) Dynamic Household traffic: Fig. 15 shows our first
DeepQoS scenario in which there are 25 classic and 25
scalable TCP flows as a static background traffic (each is
considered as a separate TA). The traffic of a household as
depicted in Fig. 9 is marked by DeepQoS. Each TA applies
a Gold policy (TVF) and the RTT is 5ms. New flows in the
household traffic start in every 10s. Since all the TAs apply
the same policy, the expected fair share is about 200 Mbps for
each TA. The aggregated throughput of the household (“HH”)
is shown separately on the top, while the flow shares within the
household traffic is depicted on the bottom. First, flow PC1-3
starts (orange), when it is alone it utilizes the whole share of
the HH. As other flows join, they share the dedicated capacity
of the HH according to the HQoS policy shown in Fig. 9. The

0 10 20 30 40 50 60

Time [s]

0

20

40

60

80

100

H
H
S
ha
re

(%
)

PC2-1

PC2-2

PC2-3

SumPC1

SumPC2

SumPC3

SumPC4

Fig. 15. Dynamic household traffic

0 10 20 30 40 50 60 70

Time [s]

0

20

40

60

80

100

H
H
S
ha
re

(%
)

PC2-1

PC2-2

PC2-3

SumPC1

SumPC2

SumPC3

SumPC4

SumPC5

Fig. 16. Dynamic household traffic where PC5 served with strict priority

ideal flow shares calculated from the HQoS policy are marked
by dashed/dotted lines. One can observed that for PC2 both
the aggregated throughput and the share of its subflows are
close to the ideal curves. The aggregated throughput of the
HH (red curve in the top figure) shows similar behavior as
the background flows (orange and blue). Though HH flows
use classic Cubic CCA, as the number of subflows increases it
results in more stable rate control and better utilization similar
to L4S background flows. This scenario illustrates that the
resource sharing targets are met on all hierarchy levels: on the
top level between the TAs as defined by the TVF, between
the PCs and between subflows of the same PC as defined
by the DeepQoS marking. We emphasize here that VDQ-
CSAQM is unaware of the HQoS hierarchy, it just maximizes
the transmitted Packet Values while it also differentiates the
queuing delay between classic and scalable traffic.

2) Dynamic Household traffic with a priority PC: Fig. 16
shows the previous scenario with a slight modification: PC5
receives gaming traffic (PC5-1) which is modeled by an unre-
sponsive UDP flow with a constant sending rate of 50Mbps.

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2022.3152017

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.



SUBMITTED TO IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT 14

0 10 20 30 40 50 60 70

Time [s]

0

20

40

60

80

100

H
H
S
ha
re

(%
)

PC1-3

PC1-5

PC2-1

PC2-2

PC2-3

SumPC1

SumPC2

SumPC3

SumPC4

Fig. 17. Dynamic household traffic where flow 5 of PC1 served with strict
priority

PC5 is served with strict priority in the HH therefore it can
consume the 50Mbps without any restriction over the entire
measurement interval. PC1-PC4 share the remaining 150 Mbps
bandwidth with the same ratio as in the previous scenario. The
gaming traffic experiences 0% packet loss even though there is
about 0.5% packet loss in the classic queue. This is the natural
consequence of the PPV concept: if some flow’s throughput
ends up under its fair share, the bottleneck does not drop any
of its packets. The total throughput of the HH is also in pair
with the curves of the background flows as in the previous
scenario.

3) Dynamic Household traffic with a priority flow: Fig. 17
depicts a similar case to the previous scenario, but instead of
giving strict priority to the total traffic of PC5 within the HH
traffic, we only prioritize a single gaming flow (PC1-5) of
PC1. Note that the flows of PC1 have no high priority in the
aggregated traffic of the HH. In this case, the gaming traffic
does not experience any packet loss until its constant sending
rate of 50Mbps does not exceed the fair share of PC1. When
PC4 starts the transmission at 40 sec, PC1’s fair share drops
below 50 Mbps, leading to packet losses in the gaming traffic.
As a consequence, flow PC1-3 (the other flow of PC1) is
slowly suffocated by starvation since the gaming traffic (PC1-
5) consumes all the available bandwidth of PC1. This scenario
demonstrates the capability of DeepQoS to provide loss-less
delivery for the gaming flow, if there are enough resources for
the given PC in the HH (at least the capacity for serving the
demand of the strict priority flow).

4) Static HH with dynamic background: In the following
scenario depicted in Fig. 18, we investigate the robustness
of DeepQoS policy enforcement in the presence of dynamic
background traffic. In the first phase, a static HH traffic is
generated from the beginning to the end of the scenario,
consisting of flows with classic CCA. The traffic mix of the
HH and the applied HQoS policy are the same as in the last of
phase of Fig. 15, having hierarchical WF scheduling among
the PCs and their flows. At 60s, two background flows (1-
1 classic and scalable) as separate TAs arrive in the system.

Fig. 18. Static household traffic without strict priority sources

0 100 200 300 400 500

Time [s]

0

20

40

60

80

100

H
H
S
ha
re

(%
)

PC2-1

PC2-2

PC2-3

SumPC1

SumPC2

SumPC3

SumPC4

SumPC5

Fig. 19. Static household traffic where PC5 served with strict priority

Then, in every 60s, we launch additional background flows
(1-1, 2-2, 6-6, 10-10, 30-30, 50-50 and 100-100) where each
of them represents a TA. The red curve in the top figure
represents the aggregated throughput of the HH, indicating fair
resource share among all the TAs in the system. In addition,
the throughput ratio of flows in the HH traffic is not affected
by the increasing traffic load and thus remains the same during
the entire measurement period. It demonstrates that DeepQoS
with VDQ-CSAQM is robust and reacts well to dynamic
background traffic.

5) Static HH with a priority PC and dynamic background:
In this scenario the static HH traffic includes a strict priority
gaming PC5 as the last state in Sec. VII-B2. The background
traffic is the same as in the previous scenario. In contrast to
the previous cases, the gaming traffic is considered as an L4S
flow, thus it is directed into the high priority queue of the
VDQ-CSAQM scheduler. The rest of the HH’s traffic consists
of classic TCP flows. Fig. 19 shows that while the aggregated
throughput of the HH follows its ideal, the 50 Mbps sending
rate of gaming flow (PC5-1) contributes more and more to the

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2022.3152017

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.



SUBMITTED TO IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT 15

aggregate as the background load increases. In addition to per-
flow throughput, we also monitored the queueing delay in the
L4S queue of the scheduler. VDQ-CSAQM kept the delay low
for L4S traffic including the gaming flow: the min/max/average
delay was 0.04/0.31/0.094ms. At the same time, the observed
resource share between the flows of the HH follows the defined
HQoS policy well.

The bottom figure clearly shows how PC5’s share becomes
larger and larger in the HH traffic, while the other flows share
the remaining bandwidth as defined by the HQoS policy. In the
last stage (after 210 sec) of the scenario the allocated (ideal)
throughput of the HH drops to 47.5Mbps and, as a result, the
system can only serve the gaming traffic with dropping about
6% of its packets. Since PC5 has strict priority in the HH,
flows of every other PC are completely starved.

C. Static scenarios

In this section, we analyze the performance of the proposed
method in a large number of static measurement scenarios
with various network conditions. The aggregated figures show
the calculated throughput deviation for each flow type. The
throughput deviation for a given throughput sample 𝑥𝑖 of
flow/TA 𝑖 is defined as 𝑥𝑖

ideal𝑖
− 1 where ideal𝑖 is the ideal

throughput of flow/TA 𝑖 according to the applied TVF and
HQoS policy. For each flow we calculated throughput samples
in 1s time windows. The average, the 10th and the 90th
percentile of the throughput deviation samples are depicted for
each flow type. Most scenarios mix flows from two types while
the total number of flows is varied from 2 to 200. We examine
symmetric traffic mixes where the number of flows from the
two types is the same, and asymmetric ones where the first
flow type contributes 10% or 90% of the flows (labeled with
“-.1” or “-.9”, resp.). In some cases, a household (HH) user is
also added to the traffic mix to demonstrate the performance of
HQoS policy enforcement. Each measurement scenario lasts
at least 20s, resulting in 20 or more throughput samples for
each flow (the transients are disregarded).

Fig. 20 depicts the scenarios where all flows apply a Gold
policy, and there is no designated household traffic in the
system. We consider the following flow type settings: classic
Cubic flows only with 5ms RTT for reference (“5”), classic
Cubic flows with different RTTs (5ms-40ms: “5-40” and
0.3ms-0.7ms: “.3-.7”), and finally a mix of either classic Cubic
or L4S Prague flows with 5ms RTT (“5-p”). In general the
fairness is quite good in all cases, significant deviations can
only be observed when the number of flows is small (2 or 4),
and the fairness improves as the number of flows in the traffic
mix grows. In scenario “5”, the average fairness is perfect
by definition and the deviation decreases as the number of
flows increases. In the “5-40” cases, flows with 5ms RTT
experience somewhat larger throughput, but the difference is
much smaller than expected from the RTT difference. In the
asymmetric cases of ”5-40-.1” and “5-40-.9” the deviation
from the ideal is somewhat larger, especially when only 10%
of the flows are with 5ms RTT (5-40-.1) and they have more
room to compete with other flows having 40ms RTT. In the
“.3-.7” scenarios, the deviation becomes larger as the number

of flows increases. One can observe that flows with larger
RTT (0.7ms) experience higher throughput. This is due to that
VDQ-CSAQM updates cut-off values (CTVs) in every 8ms
which is much larger than the typical RTT. It means that a
calculated CTV is valid for tens of RTTs which likely hurts
the flows with lower RTT more significantly. Note that this
issue can be fixed by shorter update periods which requires
some changes of the P4 implementation design. The fairness
is still quite good with small deviation from ideal. The “5-
p” scenarios contain flows with both Cubic and Prague CCAs
while the RTT is 5ms for each flow. One can observe that
scalable Prague flows obtain larger throughput. First, the rate
reduction of a Prague flow in case of congestion is much
smaller than with Cubic CCA, meaning that they can better
utilize their fair share. Second, Prague flows are ECN capable
and their packets marked with ECN-CE are not dropped, in
some cases, especially when the number of flows is high, the
ratio of ECN marking reaches 10-15%, which means that they
experience a similar throughput boost. The results are similar
in the “5-p-.9” scenarios. In case of “5-p-.1” scenarios, Cubic
flows experience higher share than Prague ones. This is due
to the VDQ-CSAQM design detail (Sec. VI), that 8% of the
bottleneck capacity is reserved for cubic flows (the difference
between the serving rates of the two virual queues.

As a reference, Fig. 21 depicts the same scenarios with a
simple FIFO/tail-drop scheduler where the buffer size is 1ms.
For easy comparison we use the same limits on the y axis as on
the original figure. We excluded the “5-p” scenarios since we
had no reference L4S scheduler in P4. By comparing the two
figures it is easy to see the huge improvement in fairness with
VDQ-CSAQM in all cases. Even for the simplest scenario “5”,
the deviation is significantly decreased by the use of VDQ-
CSAQM. The fairness degrades most for the scenarios “5-40”,
some measurement samples do not even fit to the [-0.5, 1]
range. These outliers get more than twice or less than half of
the ideal throughput. In the “.3-.7” scenarios, both the average
fairness and the deviation degraded significantly compared to
VDQ-CSAQM.

Fig. 22 depicts the same scenarios as Fig. 20 with the traffic
of a single household (HH) added to each case. The HH is
considered as a single TA consisting of multiple subflows.
The ideal throughput of the total household is the same as
that of any other flow type in the scenarios. The HH usually
experiences a slightly higher throughput than its fair share,
but considering that this TA consists of 6 parallel TCP flows
the resulted resource share is still good. Adding the HH as
a new TA does not significantly change how the rest of the
flows share the system capacity (compared to Fig. 22). In the
“5-40” and “5-40-.1” scenarios, when there is a high number
of flows with 40ms RTT, the deviation of the HH’s aggregated
throughput becomes higher. The flows with 40ms RTT utilize
their fair share harder because of their slower convergence.
Considering that both the number of TCP flows per user (6
for HH, 1 for all other), and the RTT difference (5 vs. 40ms)
work against fair sharing, the method results in a quite good
performance. For the “5-p-0.1” case for large number of flows
the HH obtains a higher share. In these scenarios, the system
is less stable, because of the aforementioned 8% difference

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2022.3152017

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.



SUBMITTED TO IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT 16

Fig. 20. Resource sharing for static traffic mix

Fig. 21. FIFO resource sharing for static traffic mix

Fig. 22. HQoS resource sharing for static traffic mix with the traffic of a household included

in the service rates of virtual queues. In the rest of the “5-
p” scenarios, the experienced throughput values are close to
the ideal. The bottom figure depicts the resource share of
flows within the HH according to the applied HQoS policy. In
most scenarios, the throughput values of both flows and PCs
are close to the ideal. One can also observe that the highest
deviation from the ideal throughput ratios are in those “5-p-.1”
scenarios that contains much more Prague flows than Cubic
ones (5-45, 10-90 and 20-180). In these cases, the aggressive-
ness of more TCP flows per traffic aggregate (either the PC
aggregates or the HH aggregate) matters more, explaining the
larger deviation. Note that this level of deviations can only be
seen in the presence of large number of L4S flows and when

the composition of the TAs fundamentally differs (i.e., each
background TA is represented by a single TCP flow while the
HH consists of 6 flows that leads to better overall utilization).

Fig. 23 depicts measurements with the same traffic mixes
but instead of applying the same Gold policy for all the TAs,
one of the flow types has Silver policy in every scenario.
According to the TVFs, it means an expected 4:1 resource
share between Gold and Silver flows, resp. In the top figure
the first flow type in the labels is Gold (G) and the second is
Silver (S), while in the bottom figure it is the other way around.
For the “G5-S5” scenarios for larger number of flows the 4:1
weighted fairness can be realized accurately. For fewer flows,
Silvers experience slightly more throughput than their ideal

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2022.3152017

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.



SUBMITTED TO IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT 17

Fig. 23. Resource sharing for static traffic mix with Gold ans Silver policies

allocation. This is not surprising since Silver and Gold flows
increase their congestion window in the same way with the
same clocking (RTT is the same), but the ideal rate of Silver
flows is 1/4th of the Gold ones which can be reached faster,
and Silvers have the potential to utilize the available unused
resources till Golds reach their fair share. (Note that the “G5-
S5” scenario has the same traffic as the “S5-G5”, “G5-S5-.1”
as “S5-G5-.9”, and “G5-S5-.9” as “S5-G5-.1”. The scenarios
are kept for easy comparison of the figures). For the “G5-S40”
scenarios, the experienced fairness is good, except when the
number of flows is limited (e.g., 2 or 4). In contrast, the “S5-
G40” cases show much higher throughput deviations, since
Gold flows with large RTT can receive higher throughput (4
times more than Silvers) but they can increase their sending
rate much slower than the Silver flows, leading to slower
convergence and underutilization. This is especially visible in
the “S5-G40-.1” case, when only 10% of the flows are Silver
with 5ms RTT, thus these flows have a good chance to grab
more capacity than their fair share by occupying the unused
resources of Gold flows. Note that even in this imbalanced case
the overall fairness is acceptable and much better than with
FIFO queues. The throughput of each individual Gold flow
is very close to the ideal, and thus the higher sending rates
of Silver flows do not have a significant impact on the Gold
ones. For the “G.3-S.7” scenarios with data center-like RTTs,
the fairness is close to perfect. Interestingly, slight unfairness
can be observed when the number of flows is large, the reasons
being similar as for Fig. 20. In the opposite “S.3-G.7” cases
high deviations can be seen for each setting. Though flows
with 0.3ms RTT get somewhat less throughput than their
ideal, the resulted fairness is still in an acceptable range.
The observed deviations originate in the too large update
period (8ms) of the current VDQ-CSAQM implementation and
the effect of heterogeneous RTTs. The fairness of “S5-Gp”
scenarios is even better than the results of “5-p” in Fig. 20. It
is not surprising and caused by the different CCA behaviors.

The Cubic CCA reduces the sending rate more than the
Prague CCA and its flows are marked with the Silver policy,
resulting in lower desired resource share. An interesting case
is “S5-Gp-.1”, where the 8% difference in the service rates
of applied virtual queues makes the desired resource sharing
impossible, leading to higher relative deviance than 1.0 (out
of the range shown in the figure). Despite this phenomenon,
Gold Prague flows only get slightly less throughput than what
they could ideally have. For the “G5-Sp” scenarios the fairness
is somewhat worse than for “5-p” where the same policy
is applied for all TAs. In this case, the different behaviors
of CCAs work against reaching the desired resource share.
Note that similarly to previous cases, the throughput of each
individual Gold TA is only slightly below its ideal and the
higher sending rates of Slivers do not significantly degrade
the performance of Gold TAs.

D. Limitations
As shown previously, the flow types we mix in different

scenarios result in significant unfairness in a FIFO-based
bottleneck. We do not expect perfect resource shares with
VDQ-CSAQM either, rather a good enough fairness, for the
following reasons.

I) The Tofino-based P4 switch has been designed for use
cases where large packet buffers are not needed (e.g., data
center networks). Achieving full utilization with different
TCP CCAs and different number of flows requires right-
sized buffers [31] (e.g., proportional to the bandwidth-delay
product), especially in transient cases. With the current settings
the small buffers limit the performance of flows with large
RTT (40ms) in some cases, but even for smaller RTT it might
be a drawback for many CCAs. This also results in that
few TCP flows (1 to 4) usually cannot utilize the bottleneck
perfectly, in that case the fairness is also less perfect, because
the throughput is very dependent on the actual CCA used.
Programmable switching ASICs appeared on the market few

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2022.3152017

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.



SUBMITTED TO IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT 18

years ago, targeting data center networks. However, it is very
likely that ASICs for different business use cases (e.g., AANs)
will also be designed in the future, potentially having larger
packet buffers and thus remedying the issues mentioned in this
paragraph.

II) TCP CCA controls the bitrate by two mechanisms:
1) changing the congestion window based on congestion
detection and 2) self clocking. Self clocking works much
better when each flow has it own buffer, which is true for
FQ schedulers [12], but not for VDQ-CSAQM.

III) Different flow aggregates have different aggressiveness.
Prague CCA on one hand reduces the sending rate less in
case of congestion than Cubic CCA. On the other hand,
Prague CCA increases its sending rate slower in lack of
congestion than Cubic, as it mimics a NewReno-like behavior.
A flow aggregate with several TCP flows (e.g., a household)
both decreases less for congestion and increases its sending
rate faster. An unresponsive UDP flow can be especially
aggressive, and harder to control in a shared buffer.

IV) For flows with very small RTT (0.3ms and 0.7ms) the
update period of 8ms in the P4 implementation of our VDQ-
CSAQM scheduler might be too long, raising further issues
on how the control and data plane interaction and thus the
feedback loop in programmable switches could be accelerated
for supporting real-time control in AQMs or other algorithms.

V) Finally, the service rates of the virtual queues limit the
bottleneck utilization to 98% (or to 90% if only L4S flows
are present). This slight underutilization is compensated by
the resulting lower queue delay.

VIII. CONCLUSION

High-speed hardware switches has not been designed to
support complex Hierarchical Quality of Service (HQoS). We
proposed DeepQoS, a HQoS capable core-stateless packet
marker which can be used to mark resource sharing policies
of different layers of HQoS simultaneously and effectively in
a single point. It extends the existing core stateless Per Packet
Value marking, and similarly to that different aggregates can
be marked independently from each other. Using DeepQoS
a HQoS hierarchy of arbitrary depth can be realized with a
very simple scheduler. DeepQoS can freely be combined with
the existing remarking-based HPPV solution, which is more
appropriate at higher aggregation. DeepQoS marking can be
used with any Core Stateless Per Packet Value Scheduler.
These schedulers do not need to be HQoS aware and can
be used as is. To demonstrate the simplicity of scheduling
we implemented our Virtual Dual Queue Core Stateless Ac-
tive Queue Management (VDQ-CSAQM) proposal on pro-
grammable switches. Our evaluation demonstrates that the
constrained Traffic Management engine of the programmable
switches can be extended using DeepQoS to indeed realize a
HQoS hierarchy of arbitrary depth. We argue that by combin-
ing DeepQoS with the PV-remarking concept of HPPV [21],
complex HQoS trees required to control resource sharing in
access aggregation networks and in cloud networks can be
realized on programmable switches.

APPENDIX A
RATE SAMPLES GENERATED BY DEEPQOS COMPONENTS

Lemma 1 (SP component). Assuming 𝑛 input flows so that
the probability of packet arrival from input 𝑖 is 𝑃[Input𝑖] =
𝑆𝑖/

∑𝑛
𝑘=1 𝑆𝑘 and for each input 𝑖: 𝑟

(𝑖)
𝑖𝑛
∈ [0, 𝑆𝑖] input sam-

ples are chosen uniformly at random, SP-Marking algorithm
generates 𝑟𝑜𝑢𝑡 ∈ [0,

∑𝑛
𝑘=1 𝑆𝑘] samples that follow a uniform

probability distribution in the aggregated throughput range.

Proof. Let assume that 𝑟𝑜𝑢𝑡 is a random variable representing
the output of SP-Marking algorithm. For any 𝑌 ∈ [0,∑𝑛

𝑘=1 𝑆𝑘]:

𝑃[𝑟𝑜𝑢𝑡 < 𝑌 ] =
𝑛∑︁
𝑖=1

𝑃[Input𝑖]𝑃[
𝑖−1∑︁
𝑘=1

𝑆𝑘 + 𝑟 (𝑖)𝑖𝑛 < 𝑌 | Input𝑖] =

𝑛∑︁
𝑖=1

𝑆𝑖∑𝑛
𝑘=1 𝑆𝑘

𝑃[𝑟 (𝑖)
𝑖𝑛

< 𝑌 −
𝑖−1∑︁
𝑘=1

𝑆𝑘 | Input𝑖]

Let us assume that
∑ 𝑗−1

𝑘=1 𝑆𝑘 ≤ 𝑌 ≤ ∑ 𝑗

𝑘=1 𝑆𝑘 . Then the above
probability can be calculated as

𝑛∑︁
𝑖=1

𝑆𝑖∑𝑛
𝑘=1 𝑆𝑘

𝑃[𝑟 (𝑖)
𝑖𝑛

< 𝑌 −
𝑖−1∑︁
𝑘=1

𝑆𝑘 | Input𝑖] =

𝑗−1∑︁
𝑖=1

𝑆𝑖∑𝑛
𝑘=1 𝑆𝑘

× 1 +
𝑆 𝑗∑𝑛
𝑘=1 𝑆𝑘

𝑌 −∑ 𝑗−1
𝑘=1 𝑆𝑘

𝑆 𝑗

=
𝑌∑𝑛

𝑘=1 𝑆𝑘
.

□

Lemma 2 (WF component). Assuming 𝑛 input flows so that
the probability of packet arrival from input 𝑖 is 𝑃[Input𝑖] =
𝑆𝑖/

∑𝑛
𝑘=1 𝑆𝑘 and for each input 𝑖 : 𝑟

(𝑖)
𝑖𝑛
∈ [0, 𝑆𝑖] input sam-

ples are chosen uniformly at random, WF-Marking algorithm
generates 𝑟𝑜𝑢𝑡 ∈ [0,

∑𝑛
𝑘=1 𝑆𝑘] samples that follow a uniform

probability distribution in the aggregated throughput range.

Proof. We assume that the indexes of the 𝑛 input flows are in
increasing order according to their projected capacity. Let 𝑟𝑜𝑢𝑡
be a random variable representing the output of WF-Marking
algorithm. For each input 𝑖, the rate transformation function
that maps 𝑟

(𝑖)
𝑖𝑛
∈ [0, 𝑆𝑖] samples into [0,∑𝑛

𝑘=1 𝑆𝑘] is denoted
by 𝑓𝑖 (.). For any 𝑌 ∈ [0,∑𝑛

𝑘=1 𝑆𝑘]:

𝑃[𝑟𝑜𝑢𝑡 < 𝑌 ] =
𝑛∑︁
𝑖=1

𝑃[Input𝑖]𝑃[ 𝑓𝑖 (𝑟
(𝑖)
𝑖𝑛
) < 𝑌 | Input𝑖] =

=

𝑛∑︁
𝑖=1

𝑓 −1
𝑖
(𝑌 )∑𝑛

𝑘=1 𝑆𝑘
=

Assuming that 𝑅 𝑗−1 < 𝑌 ≤ 𝑅 𝑗 , the inverse transformation
can be written as 𝑓 −1

𝑖
(𝑌 ) = (𝑌 − 𝑅 𝑗−1)𝑊 𝑗 ,𝑖 + 𝑅 𝑗−1,𝑖 .

=

𝑗−1∑︁
𝑖=1

𝑆𝑖∑𝑛
𝑘=1 𝑆𝑘

+
𝑛∑︁
𝑖= 𝑗

(𝑌 − 𝑅 𝑗−1)𝑊 𝑗 ,𝑖 + 𝑅 𝑗−1,𝑖∑𝑛
𝑘=1 𝑆𝑘

=

= 1∑𝑛
𝑘=1 𝑆𝑘

(
𝑗−1∑︁
𝑖=1

𝑆𝑖 +
𝑛∑︁
𝑖= 𝑗

((𝑌 − 𝑅 𝑗−1)𝑊 𝑗 ,𝑖 + 𝑅 𝑗−1,𝑖)) =

= 1∑𝑛
𝑘=1 𝑆𝑘

(
𝑗−1∑︁
𝑖=1

𝑆𝑖 +
𝑛∑︁
𝑖= 𝑗

(𝑅 𝑗−1,𝑖 − 𝑅 𝑗−1)𝑊 𝑗 ,𝑖) +
𝑛∑︁
𝑖= 𝑗

(𝑌𝑊𝑖, 𝑗 )) =

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2022.3152017

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.



SUBMITTED TO IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT 19

= 𝑌∑𝑛
𝑘=1 𝑆𝑘

+ 1∑𝑛
𝑘=1 𝑆𝑘

(
𝑗−1∑︁
𝑖=1

𝑆𝑖 +
𝑛∑︁
𝑖= 𝑗

(𝑅 𝑗−1,𝑖 − 𝑅 𝑗−1𝑊 𝑗 ,𝑖)).

For the proof, we only need to show that the last parenthesis
is zero. After rearranging the equation to be proved is:

𝑛∑︁
𝑖= 𝑗

(𝑅 𝑗−1,𝑖 − 𝑅 𝑗−1𝑊 𝑗 ,𝑖) =
𝑗−1∑︁
𝑖=1

𝑆𝑖 . (1)

This equation can be proved by induction starting with 𝑗 = 𝑛

as the base case:

𝑅𝑛−1,𝑛 − 𝑅𝑛−1𝑊𝑛,𝑛 = (𝑅𝑛,𝑛 − 𝛿𝑛) − (𝑅𝑛 − 𝛿𝑛) × 1 =

= 𝑆𝑛 −
𝑛∑︁

𝑘=1
𝑆𝑘 = −

𝑛−1∑︁
𝑘=1

𝑆𝑘 .

Then let us assume that the statement holds for 𝑗 = 𝑚 + 1.
Then we can easily show that it holds for 𝑗 = 𝑚 as well:

𝑛∑︁
𝑖=𝑚

(𝑅𝑚−1,𝑖 − 𝑅𝑚−1𝑊𝑚,𝑖) =
𝑛∑︁

𝑖=𝑚

(𝑅𝑚−1,𝑖 − 𝑅𝑚𝑊𝑚,𝑖 + 𝛿𝑚𝑊𝑚,𝑖) =

=

𝑛∑︁
𝑖=𝑚

(𝑅𝑚,𝑖 − 𝑅𝑚𝑊𝑚,𝑖) = 𝑆𝑚 +
𝑛∑︁

𝑖=𝑚+1
𝑅𝑚,𝑖 − 𝑅𝑚

𝑛∑︁
𝑖=𝑚

𝑊𝑚,𝑖 =

= 𝑆𝑚 +
𝑛∑︁

𝑖=𝑚+1
(𝑅𝑚,𝑖 − 𝑅𝑚𝑊𝑚+1,𝑖) = 𝑆𝑚 −

𝑚∑︁
𝑘=1

𝑆𝑘 = −
𝑚−1∑︁
𝑘=1

𝑆𝑘 ,

where the equation in the last line comes from the induction
hypothesis. □

A natural consequence of the above lemmas that the Deep-
QoS Marking algorithm with arbitrary marking graph results
in the same packet value distribution for a traffic aggregate
as the original PPV marker without HQoS since the resulting
rate samples follow a uniform distribution in the throughput
range of the traffic aggregate.

APPENDIX B
RESOURCE SHARING WITH DEEPQOS COMPONENTS

A mentioned previously, in the PPV framework we always
drop packets with the minimum packet value. For each con-
gestion level and traffic mix, this mechanism leads to a packet
value threshold called CTV that controls the resource share
among the traffic aggregates. Packets with values at least the
CTV are forwarded, while below that they are dropped or
marked with ECN CE. However, the CTV can also be mapped
to a rate value (𝑟𝑡ℎ) expressing the throughput share of the
traffic aggregate at the bottleneck by applying the inverse
function of the TVF used for packet marking. In this section,
we focus on how the cutoff rate 𝑟𝑡ℎ can be transformed to
cutoff rates 𝑟 (𝑖)

𝑡ℎ
for each input flow 𝑖 of DeepQoS components.

Then we also discuss the resource sharing properties of the
different components.

Lemma 3 (Cutoff rate backpropagation in the SP component).
Assuming 𝑛 input flows with sending rates 𝑆𝑖 (𝑖 = 1, . . . , 𝑛),
let 𝑟𝑡ℎ ∈ [0,

∑𝑛
𝑘=0 𝑆𝑘] be a cutoff rate. For each input 𝑖, there

exists an 𝑟
(𝑖)
𝑡ℎ
∈ [0, 𝑆𝑖] rate threshold so that SP-Marking

algorithm maps any 𝑟 ∈ [0, 𝑟 (𝑖)
𝑡ℎ
] to range [0, 𝑟𝑡ℎ], while any

𝑟 ∈ [𝑟 (𝑖)
𝑡ℎ
, 𝑆𝑖] to [𝑟𝑡ℎ,

∑𝑛
𝑖=0 𝑆𝑖], where

𝑟
(𝑖)
𝑡ℎ

=


𝑆𝑖 , if 𝑟𝑡ℎ ≤

∑𝑖−1
𝑘=1 𝑆𝑖

𝑟𝑡ℎ −
𝑖−1∑︁
𝑘=1

𝑆𝑖 , if
𝑖−1∑︁
𝑘=1

𝑆𝑘 < 𝑟𝑡ℎ ≤
𝑖∑︁

𝑘=1
𝑆𝑘

0, otherwise

Proof. Let 𝑟𝑖 ∈ [0, 𝑆𝑖] be a rate value of input 𝑖. For 𝑟𝑖 , SP-
Marking results in a transformed rate 𝑟 =

∑𝑖−1
𝑘=1 𝑆𝑘 +𝑟𝑖 . 𝑟 < 𝑟𝑡ℎ

iff 𝑟𝑖 < 𝑟𝑡ℎ −
∑𝑖−1

𝑘=1 𝑆𝑘 . □

This lemma indicates that SP-Marking algorithm imple-
ments a strict priority scheduling among the input flows since
if

∑𝑖−1
𝑘=1 𝑆𝑘 < 𝑟𝑡ℎ ≤

∑𝑖
𝑘=1 𝑆𝑘 , the input 𝑖 is rate limited but

for any input 𝑗 < 𝑖 : 𝑟 ( 𝑗)
𝑡ℎ

= 𝑆 𝑗 and each input 𝑗 > 𝑖 is fully
starved by cutting their throughput to zero.

Lemma 4 (Cutoff rate backpropagation in WF component).
Assuming 𝑛 input flows with sending rates 𝑆𝑖 (𝑖 = 1, . . . , 𝑛), let
𝑟𝑡ℎ ∈ [0,

∑𝑛
𝑘=0 𝑆𝑘] be a cutoff rate. We also assume that input

indexes are ordered according to their projected capacity. For
each input 𝑖, there exists an 𝑟

(𝑖)
𝑡ℎ
∈ [0, 𝑆𝑖] rate threshold so

that WF-Marking algorithm maps any 𝑟 ∈ [0, 𝑟 (𝑖)
𝑡ℎ
] to range

[0, 𝑟𝑡ℎ], while any 𝑟 ∈ [𝑟 (𝑖)
𝑡ℎ
, 𝑆𝑖] to [𝑟𝑡ℎ,

∑𝑛
𝑖=0 𝑆𝑖], where

𝑟
(𝑖)
𝑡ℎ

=



𝑟𝑡ℎ𝑊1,𝑖 , if 0 ≤ 𝑟𝑡ℎ ≤ 𝑅1

(𝑟𝑡ℎ − 𝑅1)𝑊2,𝑖 + 𝑅1,𝑖 , if 𝑅1 < 𝑟𝑡ℎ ≤ 𝑅2

. . . , . . .

(𝑟𝑡ℎ − 𝑅𝑖−1)𝑊𝑖,𝑖 + 𝑅𝑖−1,𝑖 , if 𝑅𝑖−1 < 𝑟𝑡ℎ ≤ 𝑅𝑖

𝑆𝑖 , otherwise

Proof. Let 𝑟𝑖 ∈ [0, 𝑆𝑖] be a rate value of input 𝑖. If 𝑟𝑖 ∈
[𝑅 𝑗−1,𝑖 , 𝑅 𝑗 ,𝑖] for any 𝑗 , WF-Marking results in a transformed
rate 𝑟 = 𝑅 𝑗−1 + (𝑟𝑖 − 𝑅 𝑗−1,𝑖)/𝑊 𝑗 ,𝑖 . 𝑟 < 𝑟𝑡ℎ iff 𝑟𝑖 < (𝑟𝑡ℎ −
𝑅 𝑗−1,𝑖)/𝑊 𝑗 ,𝑖 . □

This lemma defines the cutoff rates for each input 𝑖, but for
the analysis of its resource sharing property one can calculate
the ratio 𝑟

(𝑖)
𝑡ℎ
/𝑟𝑡ℎ. If 0 ≤ 𝑟𝑡ℎ ≤ 𝑅1, the resulted ratio is

𝑟
(𝑖)
𝑡ℎ

𝑟𝑡ℎ
=
𝑟𝑡ℎ𝑊1,𝑖

𝑟𝑡ℎ
= 𝑊1,𝑖 = 𝑤𝑖 .

One can see that the cutoff rates results in the expected
weighted fair allocation since the first throughput range is
fully used by all the inputs. In the second range when
𝑅1 < 𝑟𝑡ℎ ≤ 𝑅2, it is a slightly different, since the demand
of input 1 is less than its weighted share and the remaining
capacity is split between the remaining input flows (𝑖 ≥ 2):

𝑟
(𝑖)
𝑡ℎ

𝑟𝑡ℎ
=
(𝑟𝑡ℎ − 𝑅1)𝑊2,𝑖 + 𝑅1,𝑖

𝑟𝑡ℎ
=
(𝑟𝑡ℎ − 𝑅1)𝑊2,𝑖 + 𝑤𝑖

𝑆1
𝑤1

𝑟𝑡ℎ
.

Since the demand of input 1 is less than its weighted share if
the cutoff (bottleneck) capacity is 𝑟𝑡ℎ, each input shares the
throughput range of 0 to the projected capacity (𝑆1/𝑤1) of
input 1 proportionally to its weight (𝑅1,𝑖 = 𝑤𝑖 × 𝑆1/𝑤1) while
the remaining capacity between 𝑅1 and 𝑟𝑡ℎ is shared between

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2022.3152017

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.



SUBMITTED TO IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT 20

the remaining inputs (2, 3, . . . , 𝑛), leading to a throughput con-
tribution of (𝑟𝑡ℎ−𝑅1)𝑊2,𝑖 (recap that 𝑊2,𝑖 = 𝑤𝑖/

∑𝑛
𝑘=2 𝑤𝑘). The

same explanation holds for the general case (𝑅 𝑗−1 < 𝑟𝑡ℎ ≤ 𝑅 𝑗 ,
1 < 𝑗 ≤ 𝑖), the projected capacity of input 𝑗 − 1 is shared
proportionally, leading to 𝑅 𝑗−1,𝑖 (this is the throughput of
input 𝑖 whose transformed rate is 𝑅 𝑗−1), while the remaining
capacity 𝑟𝑡ℎ − 𝑅 𝑗 − 1 is split between inputs 𝑗 , 𝑗 + 1, . . . , 𝑛
according to their normalized weights.

Note that the above to lemmas can also be applied recur-
sively on a DeepQoS marking graph.

REFERENCES

[1] Z. Yu, J. Wu, and B. Vladimir, “Twenty years after:
Hierarchical core-stateless fair queueing,” in 18th USENIX
Symposium on Networked Systems Design and Implementation
(NSDI 21). USENIX Association, Apr. 2021. [Online]. Available:
https://www.usenix.org/conference/nsdi21/presentation/yu

[2] S. Nádas, Z. R. Turányi, and S. Rácz, “Per packet value: A practical
concept for network resource sharing,” in IEEE Globecom 2016, 2016.

[3] S. Nádas, G. Gombos, F. Fejes, and S. Laki, “A congestion control
independent l4s scheduler,” in Proceedings of the Applied Networking
Research Workshop, 2020, pp. 45–51.

[4] P. E. McKenney, “Stochastic fairness queueing,” in IEEE INFOCOM’90.
IEEE Computer Society, 1990, pp. 733–734.

[5] M. Shreedhar and G. Varghese, “Efficient fair queuing using deficit
round-robin,” IEEE/ACM Transactions on networking, vol. 4, no. 3, pp.
375–385, 1996.

[6] J. Nagle, “On packet switches with infinite storage,” IEEE transactions
on communications, vol. 35, no. 4, pp. 435–438, 1987.

[7] K. Kogan, D. Menikkumbura, G. Petri, Y. Noh, S. I. Nikolenko,
A. Sirotkin, and P. Eugster, “Towards software-defined buffer manage-
ment,” IEEE/ACM Transactions on Networking, vol. 28, no. 5, pp. 2337–
2349, 2020.

[8] K. Nagaraj, D. Bharadia, H. Mao, S. Chinchali, M. Alizadeh, and
S. Katti, “Numfabric: Fast and flexible bandwidth allocation in
datacenters,” in Proceedings of ACM Sigcomm, ser. SIGCOMM ’16.
New York, NY, USA: ACM, 2016, pp. 188–201. [Online]. Available:
http://doi.acm.org/10.1145/2934872.2934890

[9] A. Kumar, S. Jain, U. Naik, A. Raghuraman, N. Kasinadhuni,
E. C. Zermeno, C. S. Gunn, J. Ai, B. Carlin, M. Amarandei-
Stavila, M. Robin, A. Siganporia, S. Stuart, and A. Vahdat,
“Bwe: Flexible, hierarchical bandwidth allocation for wan distributed
computing,” in Proceedings of ACM Sigcomm, ser. SIGCOMM ’15.
New York, NY, USA: ACM, 2015, pp. 1–14. [Online]. Available:
http://doi.acm.org/10.1145/2785956.2787478

[10] S. Nádas, Z. R. Turányi, and S. Rácz, “Per packet value: A practical
concept for network resource sharing,” in 2016 IEEE Global Commu-
nications Conference (GLOBECOM). IEEE, 2016, pp. 1–7.

[11] H. Harkous, C. Papagianni, K. De Schepper, M. Jarschel, M. Dimolianis,
and R. Preis, “Virtual queues for p4: A poor man’s programmable traffic
manager,” IEEE Transactions on Network and Service Management,
2021.

[12] T. Høiland-Jørgensen, P. McKenney, dave.taht@gmail.com, J. Gettys,
and E. Dumazet, “The Flow Queue CoDel Packet Scheduler and
Active Queue Management Algorithm,” RFC 8290, Jan. 2018. [Online].
Available: https://rfc-editor.org/rfc/rfc8290.txt

[13] A. Kortebi, L. Muscariello, S. Oueslati, J. Roberts et al., “On the
scalability of fair queueing,” in ACM HotNets-III, 2004.

[14] M. Carlson, W. Weiss, S. Blake, Z. Wang, D. Black, and E. Davies,
“An architecture for differentiated services,” Internet Requests for
Comments, RFC Editor, RFC 2475, December 1998. [Online].
Available: http://www.rfc-editor.org/rfc/rfc2475.txt

[15] I. Stoica, S. Shenker, and H. Zhang, “Core-stateless fair queueing: A
scalable architecture to approximate fair bandwidth allocations in high-
speed networks,” IEEE/ACM Trans. Netw., vol. 11, no. 1, pp. 33–46, Feb.
2003. [Online]. Available: http://dx.doi.org/10.1109/TNET.2002.808414

[16] L. Popa, G. Kumar, M. Chowdhury, A. Krishnamurthy, S. Ratnasamy,
and I. Stoica, “Faircloud: Sharing the network in cloud computing,”
SIGCOMM Comput. Commun. Rev., vol. 42, no. 4, p. 187–198, aug
2012. [Online]. Available: https://doi.org/10.1145/2377677.2377717

[17] Z. Cao, E. Zegura, and Z. Wang, “Rainbow fair queueing:
theory and applications,” Computer Networks, vol. 47,
no. 3, pp. 367 – 392, 2005. [Online]. Available:
//www.sciencedirect.com/science/article/pii/S1389128604002361

[18] F. Kelly, “Charging and rate control for elastic traffic,” European
transactions on Telecommunications, vol. 8, no. 1, pp. 33–37, 1997.

[19] S. Laki, G. Gombos, S. Nádas, and Z. Turányi, “Take your own share of
the pie,” in Proceedings of the Applied Networking Research Workshop.
ACM, 2017, pp. 27–32.

[20] S. Nádas, G. Gombos, P. Hudoba, and S. Laki, “Towards a congestion
control-independent core-stateless aqm,” in Proceedings of the Applied
Networking Research Workshop. ACM, 2018, pp. 84–90.

[21] S. Nádas, Z. Turányi, G. Gombos, and S. Laki, “Stateless resource
sharing in networks with multi-layer virtualization,” in ICC 2019-2019
IEEE International Conference on Communications (ICC). IEEE, 2019,
pp. 1–7.

[22] M. Menth and N. Zeitler, “Fair resource sharing for stateless-core packet-
switched networks with prioritization,” IEEE Access, vol. 6, pp. 42 702–
42 720, 2018.

[23] F. Fejes, S. Nádas, G. Gombos, and S. Laki, “A core-stateless l4s
scheduler for p4-enabled hardware switches with emulated hqos,” in
In IEEE Infocom (Demo), 2021.

[24] M. Shahbaz, L. Suresh, J. Rexford, N. Feamster, O. Rottenstreich, and
M. Hira, “Elmo: Source routed multicast for public clouds,” in Proceed-
ings of the ACM Special Interest Group on Data Communication, ser.
SIGCOMM ’19. New York, NY, USA: Association for Computing
Machinery, 2019, p. 458–471.

[25] A. Liberato, M. Martinello, R. L. Gomes, A. F. Beldachi, E. Salas,
R. Villaca, M. R. N. Ribeiro, K. Kondepu, G. Kanellos, R. Nejabati,
A. Gorodnik, and D. Simeonidou, “Rdna: Residue-defined network-
ing architecture enabling ultra-reliable low-latency datacenters,” IEEE
Transactions on Network and Service Management, vol. 15, no. 4, pp.
1473–1487, 2018.

[26] C. Dominicini, R. Guimarães, D. Mafioletti, M. Martinello, M. R. N.
Ribeiro, R. Villaça, F. Loui, J. Ortiz, F. Slyne, M. Ruffini, and E. Kenny,
“Deploying polka source routing in p4 switches : (invited paper),”
in 2021 International Conference on Optical Network Design and
Modeling (ONDM), 2021, pp. 1–3.

[27] S. Laki, S. Nádas, G. Gombos, F. Fejes, P. Hudoba, Z. Turányi, Z. Kiss,
and C. Keszei, “Core-stateless forwarding with qos revisited: Decou-
pling delay and bandwidth requirements,” IEEE/ACM Transactions on
Networking, 2020.

[28] S. Floyd and V. Jacobson, “Random early detection gateways for
congestion avoidance,” IEEE/ACM Transactions on networking, vol. 1,
no. 4, pp. 397–413, 1993.

[29] L. T. L. fork, “L4S testing kernel,” 2021, [Available:
https://github.com/L4STeam/linux/commit/6633163. Online; accessed
June-2021].

[30] B. Briscoe, M. Kühlewind, and R. Scheffenegger, “More ac-
curate ecn feedback in tcp,” Working Draft, IETF Secretariat,
Internet-Draft draft-ietf-tcpm-accurate-ecn-14, February 2021, available:
https://www.ietf.org/archive/id/draft-ietf-tcpm-accurate-ecn-14.txt.

[31] F. Fejes, G. Gombos, S. Laki, and S. Nádas, “Who will save the internet
from the congestion control revolution?” in Proceedings of the 2019
Workshop on Buffer Sizing, 2019, pp. 1–6.

Ferenc Fejes achieved his MSc degree at University
of Debrecen in 2018. Then he started his PhD studies
at the Eötvös Loránd University. Since 2021, Ferenc
works as a researcher at Ericsson Research, Bu-
dapest, Hungary. His research focusing on the princi-
ples and practical applications of core stateless and
collaborative resource sharing with the per-packet
value approach. He also has experimental knowledge
with congestion controls, multipath transport and
AQMs.

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2022.3152017

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.



SUBMITTED TO IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT 21

Szilveszter Nádas received the M.Sc. degree in
electrical engineering from the Budapest University
of Technology and Economics in 2000. He is with
Ericsson Research, Hungary since then. He has been
working with Traffic Management for 20 years, and
his main interest is controlling Resource Sharing.
He is also interested in the interaction of different
mechanisms of Traffic Management (e.g., AQM and
Congestion Control) and he believes that more co-
ordination among the mechanisms is necessary.

Gergő Gombos was graduated (MSc) in 2012 at
Eötvös Loránd University (ELTE) in Computer Sci-
ence. He defended his PhD in 2018. The topic of
his thesis is the Semantic Web and the distributed
computing in Hadoop environment. Since 2018 he
works as an assistant professor at the Department of
Information Systems of Eötvös Loránd University.
His research interest includes computer networks,
Hadoop and Spark environments, big data architec-
tures and NoSQL databases.

Sándor Laki received the M.Sc. and Ph.D. degrees
in computer science from Eötvös Loránd University
in 2007 and 2015, respectively. He is currently an
Assistant Professor with the Department of Infor-
mation Systems, Eötvös Loránd University. He has
authored over 40 peer-reviewed papers and demo
papers, including publications at JSAC, INFOCOM,
ICC, and SIGCOMM. His research interests include
active and passive network measurement, traffic an-
alytics, programmable data planes, and their appli-
cation for new networking solutions.

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2022.3152017

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.


