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Abstract—Reinforcement learning has gone through an enor-
mous evolution in the past ten years. It’s practical applicability
has been demonstrated through several use cases in various
fields from robotics to process automation. In this paper, we
examine how the tools of deep Q-learning can be used in
an AQM algorithm to reduce queuing delay and ensure good
link utilization at the same time. The proposed method called
RL-AQM has the advantage that it is less prone to the good
parameterization and can automatically adapt to new network
conditions. The prototype implementation based on OpenAI Gym
and NS-3 network simulator has thoroughly been evaluated
under various settings focusing on three aspects: the convergence
time of learning process, the performance of pre-trained models
compared to PIE AQM and generalization ability. We have
demonstrated that RL-AQM achieves comparable utilization
to PIE AQM but results in much smaller queueing delays.
Finally, the pre-trained models have good generalization abilities,
enabling to use a pre-trained model in network settings that
differ in bandwidth and/or RTT from the one used during the
pre-training phase.

Index Terms—AQM, reinforcement learning, DQN, queueing
delay.

I. INTRODUCTION

End-to-end congestion control of TCP can handle network
congestion, but it builds up queues along the network path,
leading to large queuing delays that are not tolerated by
most recent applications. Active Queue Management (AQM)
has been introduced to solve the bufferbloating problem by
controlling queueing delays. AQM algorithms proactively start
dropping packets or marking them with ECN Congestion Ex-
perienced (CE) even before the queue becomes full, enforcing
sources to reduce their sending rates. They are usually de-
ployed in routers and switches and deal with traffic aggregates
flowing through the bottleneck link.

In the past decade, many AQM proposals like RED, PIE,
or CoDel have emerged. The key problem with current AQM
algorithms is that their performance largely depends on their
parameters and sometimes finding the optimal settings is not
trivial. One method with a specific setting can outperform
others in a network environment while others can provide
better performance in another environment. AQM algorithms
are usually tuned by extra parameters like drop rate, queue
maximum threshold, target time whose optimal values may be
varied form network to network, regarding the actual traffic
and network conditions [1], [2]. This recognition led the
researchers to parameter-less or auto-tuning AQM proposals
[3], [4].

In parallel, artificial intelligence and machine learning have
also gone through an enormous evolution. Reinforcement
learning proved to be useful in many practical areas from high
level control of robots to low-level control of processes. One of
their benefits compared to static models is that they can adapt
to the changes in the environment, using the well-known trial-
and-error approach. A learning agent continuously monitors
the state of the environment, using the state information it
applies an action that affects the behavior of the environment,
evaluate the decision using a reward function, and finally
reinforce the internal model according to the goodness of the
applied action.

In this paper, we propose an AQM algorithm called RL-
AQM that exploits the idea of reinforcement learning. The
proposed method consists of two components: 1) a simple
queuing discipline (QDisc) that applies a given drop probabil-
ity at packet arrival, 2) an agent that sets the drop probability
applied by the QDisc. More specifically, the agent periodically
obtains information about the queue and bottleneck link states
from which it computes an action to be executed that modifies
the QDisc’s drop probability. One can observe that this design
fits well to the general view of software defined networking
(SDN) and programmable data planes like P4 [5] where the
learning agent can be part of the control plane while the
data plane is responsible for assembling state information and
implementing the simple QDisc mechanism.

We have implemented the proposed RL-AQM in NS-3
network simulator using its OpenAI Gym extension [6]. The
prototype has thoroughly been evaluated under various settings
to demonstrate that RL-AQM achieves good utilization while
results in small queueing delays, and its pre-trained internal
model has a good generalization ability.

The paper organized as follow: Section II gives a short
overview of the related work. In Section III we present our
system the RL-AQM and we evalute in Section IV. Finally, in
Section V we make some conclusion.

II. RELATED WORK

In [7], Reinforcement Learning Gradient-Descent (RLGD)
AQM scheme has been proposed to control the queue length
and to maximize the throughput. Simulation results show that
the RLGD can achieve the stability of the queue length under
various network conditions in a shorter jitter time and more
robust than the traditional PI and REM controllers. In [8]
QRED introduced, a Q-learning algorithm used to optimize



the original maximum dropping probability calculation method
in RED. Results demonstrate QRED improves the overall
network performance and reduce the parameter sensitivity
issue of RED. The work in [9] also had presented a new
AQM algorithm based on reinforcement learning to increase
the network performances, the proposed algorithm in this work
(RL-QDL) performances better than RED in two simulation-
scenarios. This work also mentioned that RL can be used
to support QoS in all IP-networks. In [10], the reinforce-
ment signal (reward) is used to learn the congestion control
from experience with no prior knowledge about the network
dynamics. The usage of the RL with the Kanerva coding
algorithm in the agent is called QTCP, in this work, which
achieved higher throughput and lower delay than TCP-Reno
and QTCP-Baseline. In [11] the authors gave an overview
about the use of RL in a different area like wireless networks.
In [6] two well-known systems namely the NS3 and OpenAI
Gym were combined to produce a benchmarking system called
NS3-Gym. It simplifies feeding the RL with the data from
the network in the NS3 simulation and we also use this
environment in this paper. In contrast to prior work, this paper
does not rely on existing AQM schemes like RED and does not
only tune the parameters of such schemes with RL. Instead, we
propose a very simple AQM scheme that can be implemented
in nowadays P4-programmable switches, and a learning agent
that sends an action modifying the drop probability to the
AQM component periodically (in every 1-20 ms). The agent
relies on the celebrated model of RL called Deep Q-Learning
[12].

III. AQM WITH REINFORCEMENT LEARNING

The methods of active queue management aim at reducing
queueing delay while keeping the bottleneck link fully utilized.
To solve these objectives they continuously monitor both the
queue and link states and make decisions on dropping or
forwarding packets. Note that instead of dropping, AQMs can
also mark packets with ECN Congestion Experienced (CE),
reducing the number of re-transmissions in this way. In this
paper, we propose RL-AQM, an AQM algorithm that uses the
tools of reinforcement learning to control the applied drop
probability and thus to find a good trade-off between high
link utilization and low queueing delay. The implementation
of our method is based on the OpenAI Gym extension of NS-3
network simulator [6].

TABLE I
POSSIBLE ACTIONS

a0 do not modify the drop probability
a↑ increase drop probability by 0.01
a↓ decrease drop probability by 0.01
a↑↑ increase drop probability by 0.1
a↓↓ decrease drop probability by 0.1

According to the traditional RL approach [12], [13], the
environment that represents the AQM method running inside
a router can be modeled as a Markov Decision Process. The
process is represented by a five-tuple (S,A, T,R, γ) where S

is the state space, A is the action set, T (s′|s, a) is the state
transition probability where s′, s ∈ S and a ∈ A , R is the
reward function while γ ∈ [0, 1) is the discount factor. In
our method illustrated by Figure 1, s ∈ S represents a queue
state at a given point of time. s is a tuple composed of three
factors: queuing delay, bottleneck link utilization and applied
drop probability. We have introduced 5 actions described in
Table I through which the applied drop probability of the
AQM method can be modified with different intensities. In
this system model, the AQM policy is a function mapping
every state to a distribution over actions: π : S −→ A.
When we follow a policy π from state st at time t, the
value function can be calculated as the sum of rewards of
succeeding states: V π(st) = E[

∑T
i=0 γ

iR(st+i, π(st))]. The
value function ranks the policies according to the cumulative
reward. The value of a single step can be calculated similarly
by the Q-value function. Qπ(st, a) represents the expected
value starting from st, taking action a and then following π.
Q-value function can recursively estimated by the Bellman
equation: Qπ(st, a) = E[R(st, a) + γmaxa′ Q

π(st+1, a
′)].

The optimal policy have the highest Q-value function over all
policies. In Deep Q-Networks (DQN), the Q-value function is
approximated by a neural network and the reinforcement learn-
ing process uses the previously introduced Bellman equation.

The architecture of the proposed method is depicted in
Figure 1. It consists of two components: 1) the OpenAI-
based learning agent, and 2) the NS-3 simulation environment.
The NS-3 environment implements the simulation scenarios
using a dumb-bell topology with various traffic intensities and
link properties (bandwidth and RTT), and the frame of the
proposed RL-AQM method as a queuing discipline (QDisc
in NS-3 terminology) that simple drops packets at arrival
with a specific probability, maintains state information and
evaluates the reward function. The business logic is fully
implemented by the Agent. The simulator is connected to the
Agent and reports the current state of the QDisc (queueing
delay, utilization and actual drop probability) periodically,
in every 20 ms in our setting. It also computes the reward
(R(st, at)) for the simulation period elapsed since the last
update of drop probability (using action at at time t). The
Agent takes the computed reward and the new state st+1,
and applies the Bellman equation to update the DQN model.
Then the new state st+1 is fed into the DQN to calculate
the Q-values Q(st+1, a) for each action a. The candidate
action to be performed is the one with the highest Q-value:
at+1 = argamaxQ(st+1, a). To determine the action to
be executed we also apply further heuristics and random
selection.

A. Action selection

Packets arrive in bursts at the bottleneck and thus they result
in temporal loads that are handled by the AQM methods.
However, between two such bursts the link is not overloaded
and the queue is almost always empty. When we first applied
RL-AQM, it showed a very slow convergence since the DQN
also learned Q-values for the trivial cases. To fasten learn-
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Fig. 1. RL-AQM architecture with a learning agent and NS-3 components.
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Fig. 2. The simulation is split into 9 sections with various traffic intensities.

ing process, we introduced two simple heuristics: 1) if the
queueing delay is less than 1 ms and the drop probability is
0, action a0 is chosen to keep drop probability at zero, 2) if
the queueing delay is less than 1 ms and the drop probability
is not zero, we select a↓↓ that reduces the drop probability
by 0.1. In addition to these trivial cases, we also allow the
model to discover new decisions by giving some probability
to choose a random action to be executed. This enables the
model to continuously learn and adapt to the changes in the
environment. After the pre-training phase, this probability was
set to 0.01 in our setting.

B. Pre-training

At the beginning the Agent’s internal model is empty,
it basically knows nothing about the environment and the
optimal policy π. To learn the appropriate policy and its
Q-value function, we show example episodes to the Agent
during the pre-training phase. The method is the same as in
Figure 1 with a single exception: the probability of random
action selection is not constant. It starts with 0.9 in the first
episode and decays exponentially with a minimum of 0.01.
Accordingly, in the ith episode it is set to max(0.9i, 0.01).
Each pre-training episode covers a 120 sec long simulation
with 9 sections with various traffic intensities (see Figure 2).
The bottleneck capacity and the link delays are fixed and a
dumb bell topology is used.

C. Reward function

The core essence of reinforcement learning methods is the
good choice of reward function. The reward is the optimization
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Fig. 3. Reward function.

objective used for finding the optimal policy π. In contrast to
traditional methods like PIE AQM or CoDel where a target
queueing delay parameter is needed, we have decided to follow
the idea of [3]. This paper shows that there is no unified target
delay that is optimal in all cases. The good target value also
depends on the number of flows in the system. For example,
large number of flows can fully utilize the link with smaller
target delays. This idea led us to define a reward function
depicted in Figure 3 that takes both the utilization and queuing
delay into account: R(U,D) = (U2 − 0.5) + ( 2

1+D/5 − 1.5)

where U ∈ [0, 1] is the link utilization and D ≥ 0 is the
queueing delay in ms. The reward function returns values in
the range (−2, 1] and is composed of a utilization- and a delay
component. Though it is more sensitive to the decrease in
utilization than in delay, it results in a good trade-off between
low delay and good link utilization. If the load is low, the uti-
lization component cannot grow above a certain level and thus
reward can only be increased with reduction in queuing delay.
However, if the the load is high, full utilization may require
larger queuing delays and thus delay cannot be reduced below
a limit without penalty on the utilization component. One can
also observe that for wrong cases (e.g., low utilization and
high queueing delay) the reward function assigns a negative
value (marked by red in the figure), preventing the increase of
the cumulative reward and fastening the learning process.



IV. EVALUATION

The network topology used in this work to evaluate the
proposed RL-AQM method is shown in Figure 1. It consists of
50 source and 50 sink nodes. They share the same bottleneck
between n0 and n1. Link capacities between the sources and
n0, and the sinks and n1 are set to be 1 Gbps. The bottleneck
link between n0 and n1 is set to 10 Mbps or 100 Mbps,
depending on the scenario. The end-to-end RTT between
sources and sinks are varied between 20 and 100 ms. In every
scenario, the simulation time is 120 seconds that is split into
9 sections with various number of flows (see Figure 2). Each
flow represents a TCP connection with NewReno congestion
control working in non-ECT mode. If it is not mentioned
otherwise, we present the results of pre-trained Agents (with
200 pre-training episodes).

A. Pre-training and convergence

Figure 4 shows the convergence of the average reward
(blue curve) and queueing delay (red dashed curve) over
the pre-training episodes. An episode is a 120 sec long
simulation with various traffic intensities (see Figure 2). Note
that the maximum value of the applied reward function is 1.0.
Episode 1 starts with an empty internal model. One can see
that after the first 10 episodes we reach 0.82 and then the
reward stabilizes around this point. The queuing delay is near
50 ms in Episode 1 and it reaches 20 ms by the end of pre-
training. Some outlier episodes can also be seen but in these
cases the probability of random action selection was still high,
resulting in small drop ratio in the QDisc that led to larger
queueing delays, implicating the lower reward value.

As mentioned previously, the Agent can also apply an
action selected randomly. During the pre-training phase, the
probability of random selection is high which enables the agent
to trial various actions and learn their effects. The probability
of this decision is decreasing in every pre-training episode.
Figure 5 shows the same reward (blue) as the previous figure
and the probability of random action selection (red). When
this probability is high, the less stable agent behaviour may
lead to episodes with low reward (e.g., Episode 12 and 20),
but it is natural in the pre-training period.

B. Comparison to PIE AQM

In order to consolidate the proposed RL-AQM, we will
compare its performance to PIE AQM [14] under the same
network topology. We have selected PIE among the others
AQMs because PIE is also based on control theory to oversee
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Fig. 4. Rewards and observed maximum delays over the episodes

queue size and modify drop probability accordingly, as in
the proposed RL-AQM. It also contains auto-tuning features,
allowing its usage under various network conditions without
significant re-configuration. PIE uses PI controller to update
the drop probability whereas the proposed AQM relies on
the DQN-based Agent. Figure 6 shows the total throughput
on the bottleneck link (top), the per-flow throughput curves
(middle), and the queue delay (bottom) under the action of
RL-AQM when the bottleneck link is set to 10 Mbps and
RTT is 20 ms. Figure 7 depicts these three graphs for PIE
AQM. One can observe that in comparison to PIE, RL-AQM
significantly reduces the queue delay and results in the same
link utilization. RL-AQM managed to keep the average queue
delay almost all the time under the PIE’s delay target value
(15 ms as default) especially when the number of flows is high
(50-60 secs). Even when the number of flows decreases after
the 80th second, PIE can not quickly push the delay under the
target value because it gradually decreases the drop probability
value according to its algorithm. Both AQMs obtain the same
throughput value and the fairness of flows are also relatively
the same.

Figure 8-9 show the same three metrics after we increased
the bottleneck link capacity to 100 Mbps. PIE shows better
performance in the average queue delay comparing to its
performance under the 10 Mbps but still higher than the
PIE’s target value. RL-AQM has managed to keep the average
queueing delay low in most of the simulation time. It generates
congestion signals earlier than PIE, leading to that TCP
sources starts reducing their sending rates without waiting the
queue to get full. On the other side, the utilization seen for
RL-AQM is slightly worst than for PIE, it is the price we
have to pay for the low delay. However, one can also observe
that large deviations can only be seen when the number of
flows are 1 or 2. In other cases, the total throughput is almost
100 Mbps all the time. In contrast to PIE, RL-AQM reward
function was designed to find a good trade-off between the
utilization and delay, and do not contain any target value. The
reward can be increased by decreasing the delay at the expanse
of utilization for some level, and vice-versa. Note that this
behavior is similar to what a virtual queue does with a slightly
smaller serving rate than the one of associated physical queue.

C. Generalization

During the pre-training phase, we fix the parameters of the
simulations. Though the number of flows are varied in a wide
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Fig. 5. Rewards and the probability of random action selections over episodes
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Fig. 6. RL-AQM, BN capacity=10 Mbps RTT=20 ms

0 20 40 60 80 100 120
0

10

M
bp

s Total throughput

0 20 40 60 80 100 120
0

5

10

Pe
r-f

lo
w 

th
r. 

(M
bp

s)

0 20 40 60 80 100 120
Time (sec)

0

100

Q.
 d

el
ay

 (m
s) Mean Min-Max T=15ms

Fig. 7. PIE AQM, BN capacity=10 Mbps, RTT=20 ms

range, the bottleneck capacity and the RTT remain the same
over the pre-training episodes. To check the generalization
ability of a pre-trained Agent, we have executed simulations
with different bottleneck capacity and RTT. We created an
Agent trained with the following parameters: bottleneck ca-
pacity was 10 Mbps and the RTT was 20 ms. We used this
Agent in evaluations with different settings. Figure 10 shows
the first case when the bottleneck capacity is 100 Mbps instead
of 10 Mbps while the RTT is still 20 ms. One can see that
the total throughput of flows reaches the maximum capacity
and flows share the bottleneck in a fair way. However, the
time needed for reacting to temporal bursts is longer than
it is in Figure 8, esp. when the number of flows is 1 or 2.
Note that it is also reflected by the higher queueing delays
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Fig. 8. RL-AQM, BN capacity=100 Mbps, RTT=20 ms
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Fig. 9. PIE AQM, BN capacity=100 Mbps, RTT=20 ms

in these simulation sections. The reason is that the model has
been trained with lower bandwidth where the decision is based
on fewer packets, so the congestion signal (drop probability)
generated by the AQM is higher than what is actually required
for reducing the delay.

Figure 11 depicts the second case where the bottleneck
capacity remains 10 Mbps, but the RTT is 100 ms instead
of 20 ms. Despite the feedback loop of TCP’s congestion
control is much longer, the pre-trained Agent results in almost
perfect utilization and good fairness among flows. The large
RTT results in longer ramp-up in the sending rates. The longer
queueing delays are natural results of the longer RTT, since
TCP is RTT-clocked. RL-AQM changes the drop probability,
but flows do not react until 100 ms. When the number of flows
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Fig. 10. Generalization ability of RL-AQM, BN cap. increased to 100Mbps
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Fig. 11. Generalization ability of RL-AQM, RTT increased to 100ms

is high, high average queueing delays can be observed. It is
the same situation: the AQM makes changes, but flows need
100 ms for reaction.

V. CONCLUSION

This paper proposes RL-AQM, a new AQM method based
on reinforcement learning to manage the network resources
and keep the queue delay low at the same time. The proposed
method has the advantage that it adapts to the changing
network environment automatically, without the need of extra
parameters and parameter tuning. The queue delay control is
done by an Agent implementing a Deep Q-learning model. We
implemented the RL-AQM in NS-3 network simulator with the
use of OpenAI Gym tools. Our evaluation results demonstrate

that RL-AQM provides good performance in different types of
networks (different bottleneck link capacities and RTTs). For
the purpose of validation, we have compared its performance
to the state-of-the-art PIE AQM. We have shown that RL-AQM
can keep the queue delay under PIE’s target delay during most
of the simulation time. The price of ultra-low delay is that
some bandwidth is sacrificed, esp. if the number of flows is
small, leading to a virtual queue-like behavior.
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