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• T4P4S – a multi target P4 compiler

• Traffic Management – AQM – Drop policies in P4

• Traffic Management – Per Packet Value Core Stateless Resource Sharing

this week



T4P4S
P. Vörös, D. Horpácsi, R. Kitlei, D. Leskó, M. Tejfel, S. Laki: „T4P4S: A Target-independent Compiler for Protocol-
independent Packet Processors”, Proceedings of IEEE International Conference on High Performance Switching

and Routing (HPSR 2018), 17-20 June, 2018 – Bucharest, Romania



Goals of T4P4S

 Extended data plane programmability

 P4 code as a high level abstraction

 Support of different hardware targets

 CPUs, NPUs, FPGA, etc.

 Create a compiler that separates

hardware 

dependent and independent parts

 Easily retargetable P4 compiler



Multi-target Compiler Architecture for P4

3. Switch program

 Compiled from the hardware-
independent C code of the
„Core” and the target-specific
HAL

 Resulting in a hardware 
dependent switch program

P4 program

P4C

Intermediate

Representation

C compiler & 
linker

„Core” code using

NetHAL API calls

NetHAL implementation

for a given target

Switch

program

Core
compiler

1. Hardware-independent „Core”

 Using an Intermediate Representation (IR)

 Compiling IR to a hardware independent C code with NetHAL calls

2. Hardware-dependent „Network Hardware Abstraction Layer” 
(NetHAL)

 Implementing primitives that fulfill the requirements of most hardware

 A static and thin library

 Written by a hardware expert (currently available for DPDK, ODP, native
Linux)



Multi-target Compiler Architecture for P4

P4 program

P4C

Intermediate

Representation

C compiler & 
linker

„Core” code using

NetHAL API calls

NetHAL implementation

for a given target

Switch

program

Core
compiler

 PROs

 Much simpler compiler

 Modularity = better maintainability

 Exchangeable NetHAL = re-targetable 

switch (without rewriting a single line of 

code)

 NetHAL is not affected by changes in the P4 

program

 CONs

 Potentially lower performance

 Difficulties with protocol/hardware-dependent 
optimization

 Communication overhead between the 
components (C function calls)

 Too general vs too detailed NetHAL API
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The „core”

Run to completion model

 Plans to move to a pipeline model

The core implements

 Packet „parsing”

 Control programs

 Actions

 Key calculations for lookup tables

Packet

Ingress port

Abstract
packet type

Packet

representation

rte_mbuf in DPDK

NetHAL

Standard 

metadata

(e.g. ingress port)

Lightweight

parsing

Information about
header instances
(type, pointer, length) 

CORE

Lightweigth

Parsed

Representation

Packet

Description
Controls

Packet parsing

 Lightweight Parsed Representation

 Determining the positions and types of 
headers in the packet

 No "real" parsing or field extraction 

 lazy evaluation



The „core”

Run to completion model

 Plans to move to a pipeline model

The core implements

 Packet „parsing”

 Control programs

 Actions

 Key calculations for lookup tables

Packet

NetHALCORE

Packet

Description

Controls

e.g. Ingress

Apply tables
Key 

calculation

Table config

Counter config

Lookup table

instance

Action Primitives

Controls and actions

 Controls and actions are translated 
to C functions

 Key calculation for lookup tables

 Fields are extracted when needed

 In-place field modifications



Network Hardware Abstraction Library

Low-level generic C API 

 For networking hardwares

Hardware specific implementations of

 States/settings (tables, counters, meters 

etc.)

 Related operations (table 

insert/delete/lookup,

counter increment, etc.)

 Packet RX and TX operations

 Primitive actions (header-related + 

digests)

 Helpers for primitive actions (field-related)

 Implemented as macros for performance reasons

Add and remove headers
add_header(packet_descriptor_t* p, header_reference_t h)
push(packet_descriptor_t* p, header_stack_t h)
remove_header(packet_descriptor_t* p, header_reference_t h)
pop(packet_descriptor_t* p, header_stack_t h)

Field modification & extraction
MODIFY_BYTEBUF_BYTEBUF(pd, dstfield, src, srclen)
MODIFY_INT32_BYTEBUF(pd, dstfield, src, srclen)
MODIFY_INT32_INT32(pd, dstfield, value32)
EXTRACT_INT32(pd, field, dst)

Table & counter operations
exact_lookup(lookup_table_t* t, uint8_t* key)
lpm_lookup(lookup_table_t* t, uint8_t* key)
ternary_lookup(lookup_table_t* t, uint8_t* key)
exact_add(lookup_table_t* t, uint8_t* key, uint8_t* value)
lpm_add(lookup_table_t* t, uint8_t* key, uint8_t depth, uint8_t* value)
ternary_add(lookup_table_t* t, uint8_t* key, uint8_t* mask, uint8_t* value)
increase_counter(int counterid, int index)
read_counter(int counterid, int index)



Evaluation - L2 forwarding

 L2 forwarding

 Source mac learning

 Two exact match tables: src mac + dst
mac

 Testbed setup

 Intel(R) Xeon(R) CPU E5-1660 v4 @ 8c 16t 
3.20GHz, 8x8GB DDR4 SDRAM

 Dual port 100 Gbps NIC 

 Mellanox MT27700 Family [ConnectX-4]

 T4P4S performance is compared to OVS

 Identical implementations
in OpenFlow and P4

 Pseudo random test traffic generated

 A few hundred flows



Evaluation – Mobile Gateway

 Uplink:

 L2, L3 and L4 check (gateway MAC/IP and 
UDP port destination 2152)

 GTP decap, save TEID

 -- Rate limit per bearer (TEID)

 L3 routing towards the Internet + L2 fwd

 Downlink:

 L2 and L3 check (check if destination IP is in
the UE range)

 -- Per user rate limiting

 GTP encap (set bearer in TEID)

 Set destination IP of the base station of the
UE

 L3 routing towards BSTs + L2 fwd



Evaluation – Mobile Gateway

 Uplink:

 L2, L3 and L4 check (gateway MAC/IP and 
UDP port destination 2152)

 GTP decap, save TEID

 -- Rate limit per bearer (TEID)

 L3 routing towards the Internet + L2 fwd

 Downlink:

 L2 and L3 check (check if destination IP is in
the UE range)

 -- Per user rate limiting

 GTP encap (set bearer in TEID)

 Set destination IP of the base station of the
UE

 L3 routing towards BSTs + L2 fwd

Testbed setup

 AMD Ryzen Threadripper 1900X

 Intel Corporation 82599ES 10-Gigabit Dual port 
NIC



T4P4S

 A translator for P4 Switches
 Open source (on GitHub)

 Visit our site: http://p4.elte.hu

 Or the GitHub repository: https://github.com/P4ELTE/t4p4s

 P4-14 and P4-16 language support

 Support of multiple targets 

 by the Hardware Independent Core and Network Hardware Abstraction 
Libraries

 NetHALs for Intel (DPDK), Freescale (ODP SDK), OpenWRT (Native Linux) 
platforms

http://p4.elte.hu/
https://github.com/P4ELTE/t4p4s


Traffic Management - AQM
Active Queue Management in general

Based on course at CMU: 15-441 Computer Networking 



• Problem: Standard loss-based TCP’s congestion control plus large
unmanaged buffers in Internet routers, switches, device drivers,... (a.k.a
Bufferbloat)

• Cause: Latency issues for interactive/multimedia applications

• Solution: AQM tries to signal the onset of congestion by (randomly?) 
dropping/marking packets

• AQM Goals
• Maintain low average queue/latency
• Allow occasional packet bursts
• Break synchronization among TCP flows

Active Queue Management (AQM)



Lecture 20: QOS (c) CMU, 2005-10 17

Traffic and Resource Management 

• Resources statistically shared

• Overload causes congestion

• packet delayed or dropped 

• application performance 

suffer

• Local vs. network wide 

• Transient vs. persistent

• Challenge

• high resource utilization

• high application performance

)t(sourceRe)t(Demand i 
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Resource Management Approaches

• Increase resources

• install new links, faster routers

• capacity planning, provisioning, traffic engineering

• happen at longer timescale

• Reduce or delay demand

• Reactive approach: encourage everyone to reduce or 

delay demand

• Reservation approach: some requests will be rejected 

by the network

)t(sourceRe)t(Demand i 
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Congestion Control in Today’s Internet 

• End-system-only solution (TCP)

• dynamically estimates network  

state

• packet loss signals congestion 

• reduces transmission rate in 

presence of congestion

• routers play  little role

TCP

TCP

TCP

Control 

Time scale
Months

Capacity 

Planning

RTT (ms)

Feedback 

Control
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More Ideas on Traffic Management 

• Improve TCP

• Stay with end-point only architecture 

• Enhance routers to help TCP

• Random Early Discard 

• Enhance routers to control traffic 

• Rate limiting

• Fair Queueing 

• Provide QoS by limiting congestion 
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Router Mechanisms 

• Buffer management: when and which packet to 

drop? 

• Scheduling: which packet to transmit next? 

1

2

Scheduler

flow 1

flow 2

flow n

Classifier

Buffer 

management
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Overview

• Queue management & RED

• Fair-queuing

• Why QOS?

• Integrated services
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Queuing Disciplines

• Each router must implement some queuing discipline

• Queuing allocates both bandwidth and buffer space:

• Bandwidth: which packet to serve (transmit) next 

• Buffer space: which packet to drop next (when required)

• Queuing also affects latency
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Typical Internet Queuing

• FIFO + drop-tail

• Simplest choice

• Used widely in the Internet

• FIFO (first-in-first-out) 

• Implies single class of traffic

• Drop-tail

• Arriving packets get dropped when queue is full regardless of flow or importance

• Important distinction:

• FIFO: scheduling discipline

• Drop-tail: drop policy
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FIFO + Drop-tail Problems

• Leaves responsibility of congestion control completely to the edges 

(e.g., TCP)

• Does not separate between different flows

• No policing: send more packets → get more service

• Synchronization: end hosts react to same events
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FIFO + Drop-tail Problems

• Full queues

• Routers are forced to have have large queues to maintain high utilizations

• TCP detects congestion from loss

• Forces network to have long standing queues in steady-state

• Lock-out problem

• Drop-tail routers treat bursty traffic poorly

• Traffic gets synchronized easily → allows a few flows to monopolize the 

queue space
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Active Queue Management

• Design active router queue management to aid congestion control 

• Why?

• Router has unified view of queuing behavior

• Routers see actual queue occupancy (distinguish queue delay and 

propagation delay)

• Routers can decide on transient congestion, based on workload
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Design Objectives

• Keep throughput high and delay low

• High power (throughput/delay)

• Accommodate bursts

• Queue size should reflect ability to accept bursts rather than steady-

state queuing

• Improve TCP performance with minimal hardware changes
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Lock-out Problem

• Random drop

• Packet arriving when queue is full causes some random packet to be 

dropped

• Drop front

• On full queue, drop packet at head of queue

• Random drop and drop front solve the lock-out problem but not the 

full-queues problem
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Full Queues Problem

• Drop packets before queue becomes full 

(early drop)

• Intuition: notify senders of incipient 

congestion

• Example: early random drop (ERD):

• If qlen > drop level, drop each new packet with 

fixed probability p

• Does not control misbehaving users
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Random Early Detection (RED)

• Detect incipient congestion

• Assume hosts respond to lost packets

• Avoid window synchronization

• Randomly mark packets

• Avoid bias against bursty traffic
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RED Algorithm

• Maintain running average of queue length

• If avg < minth do nothing

• Low queuing, send packets through

• If avg > maxth, drop packet

• Protection from misbehaving sources

• Else mark packet in a manner proportional to queue length

• Notify sources of incipient congestion
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RED Operation

Min threshMax thresh

Average Queue Length

minth maxth

maxP

1.0

Avg queue length

P(drop)
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Explicit Congestion Notification (ECN)
[ Floyd and Ramakrishnan 98]

• Traditional mechanism

• packet drop as implicit congestion signal to end 

systems

• TCP will slow down

• Works well for bulk data transfer

• Does not work well for delay sensitive applications

• audio, WEB, telnet

• Explicit Congestion Notification (ECN)

• borrow ideas from DECBit

• use two bits in IP header

• ECN-Capable Transport (ECT) bit set by sender

• Congestion Experienced (CE) bit set by router 
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Congestion Control Summary

• Architecture: end system detects congestion and slow down

• Starting point: 

• slow start/congestion avoidance

• packet drop detected by retransmission timeout RTO as congestion 

signal

• fast retransmission/fast recovery

• packet drop detected by three duplicate acks

• TCP Improvement:

• NewReno:  better handle multiple losses in one round trip

• SACK: better feedback to source

• NetReno: reduce RTO in high loss rate, small window scenario

• FACK, NetReno: better end system control law
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Congestion Control Summary (II)

• Router support 

• RED: early signaling

• ECN: explicit signaling



• RED: https://github.com/PIFO-TM/ns3-bmv2/blob/master/traffic-
control/examples/p4-src/red/basic/red.p4

RED in P4

https://github.com/PIFO-TM/ns3-bmv2/blob/master/traffic-control/examples/p4-src/red/basic/red.p4


• Uses a Proportional Integral (PI) controller to manage drop probability and 
keep the queue delay around a target value

• Lightweight as it uses delay estimation instead of timestamping

• Uses trend of latency (increasing or decreasing) over time to determine 
the congestion level

PIE AQM



PI control



PIE AQM



• https://github.com/PIFO-TM/ns3-
bmv2/blob/master/traffic-
control/examples/p4-src/pie/pie.p4

PIE in P4

https://github.com/PIFO-TM/ns3-bmv2/blob/master/traffic-control/examples/p4-src/pie/pie.p4


PI2 – for classic TCP



PI2 – for scalable TCP







• Tries to detect the standing queue by measuring minimum sojourn delay 
(delaymin) over a fixed-duration interval (default 100 ms)

• Uses timestamping

• If delaymin > target for at least one interval, enters dropping mode and a 
packet is dropped from the tail (deque)

• Next dropping time: Dropping interval decreases in inverse proportion to 
the square root of the number of drops since the dropping mode was 
entered

• Exits dropping mode if delaymin ≤ target

• No drop when queue is less than 1 MTU

CoDel – controlling delay



• 100 ms is nominal RTT assumed typical on the Internet paths 

• interval = 100 ms; assures protection of normal packet bursts 

• A small target standing queue (5% of nominal RTT) is tolerable for 
achieving better link utilization 

CoDel Assumptions



• https://github.com/ralfkundel/p4-codel/blob/master/srcP4/codel.p4

CoDel in P4

https://github.com/ralfkundel/p4-codel/blob/master/srcP4/codel.p4


Traffic Management – Token
Bucket
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Token Bucket Filter

Operation:

• If bucket fills, tokens are discarded

• Sending a packet of size P uses P 

tokens

• If bucket has P tokens, packet sent 

at max rate, else must wait for 

tokens to accumulate

Tokens enter bucket 

at rate r

Bucket depth b: 

capacity of bucket
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Token Bucket Operation

Tokens

Packet

Overflow

Tokens Tokens

Packet

Enough tokens →

packet goes through,

tokens removed

Not enough tokens 

→ wait for tokens to 

accumulate
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Token Bucket Characteristics

• On the long run, rate is limited to r

• On the short run, a burst of size b can be sent

• Amount of traffic entering at interval T is bounded by:

• Traffic = b + r*T

• Information useful to admission algorithm
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Token Bucket

• Parameters

• r – average rate, i.e., rate at which tokens fill the bucket

• b – bucket depth

• R – maximum link capacity or peak rate (optional parameter)

• A bit is transmitted only when there is an available token

r bps

b bits

<= R bps

regulator

time

bits

b*R/(R-r)

slope R

slope r

Maximum # of bits sent



• https://github.com/PIFO-TM/ns3-bmv2/tree/master/traffic-
control/examples/p4-src/token-bucket

Token bucket in P4

https://github.com/PIFO-TM/ns3-bmv2/tree/master/traffic-control/examples/p4-src/token-bucket


Per Packet Value
Core stateless resource sharing
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Resource sharing nowadays - FQ Illustration

Flow 1

Flow 2

Flow n

I/P O/P

Variation: Weighted Fair Queuing (WFQ)



• High speed access
• Mobile Access Networks, Residental Access Networks, 

Multi-tenant Data Centers, etc.

• Appropriate overprovisioning of backhaul networks
• Difficult & Costly

• Scalable bandwidth sharing supporting QoS is needed in congestion 
situations

• Simple network nodes, no per-user states, service differentiation, rich set of 
policies, etc.

Problem



• Resource sharing policies for all congestion
situations by Throughput-Value Functions (TVF) 

• Packet Marker at the edge of the network
• Stateful, but highly distributed

• Resource Nodes (e.g. routers) aim at 
maximizing the total transmitted Packet Value.

• Stateless and simple

Per Packet Value (PPV)
Resource Sharing

Source 1
2 Mbps

Source 2
6 Mbps

Bottleneck
1 Mbps

Filter by 
Value



PPV – Packet Marking
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Drop minPPV first scheduling [1]

PPV – Resource node proposals
Source 1
2 Mbps

Source 2
6 Mbps

Bottleneck
1 Mbps

Filter by 
Value

PVPIE – PPV with PIE AQM [2]

CSAQM – PPV + CC indep. AQM [3]



Further readings

[1] Sz. Nadas et al., Per Packet Value: A Practical Concept for 
Network Resource Sharing. In proc. of IEEE Globecom 2016.

[2] S. Laki et al., Take Your Own Share of the PIE, In proc. of 
IRTF/ACM ANRW 2017 

[3] Sz. Nadas et al., Towards a Congestion Control-Independent 
Core-Stateless AQM, In proc. of IRTF/ACM ANRW 2018

[4] S. Laki et al., Scalable Per Subscriber QoS with Core-Stateless 
Scheduling, Industrial demo at ACM SIGCOMM 2018

Similar approaches published recently

[5] M. Menth et al, Activity-based congestion management for fair 
bandwidth sharing in trusted packet networks, In proc. of IEEE/IFIP 
NOMS 2016

[6] M. Menth et al., Fair Resource Sharing for Stateless-Core
Packet-Switched Networks with Prioritization, IEEE Access 2018.

[7] R. Bless et al., Policy-oriented AQM Steering, In proc. of IFIP 
Networking 2018.

More

Industrial Demo at SIGCOMM 2018
PPV-based Core Stateless vBNG node implementation



PVPIE results



Simulation Results
Gold and silver TCP sources

Scenario 1c 2 3a 4b

Bottleneck [Mbps] 100 50 10,50,100,50,10 10

Number of TCP flows (Gold-Silver) 1-1, 2-2, 4-4, 8-8 0-0, 1-1, 2-2, 4-4 1-1 5-0

Number of UDP flows 0 3 (Background) 0 2 (Silver)

Number of TCP connections / flow 5 1 5 5

Target Delay [ms] 40 40 40 20

round-trip propegation delay [ms] 40 40 40 100

ECDF window 1 . T 1 . T 1 . T 10 . T
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Simulation Results
with nON-congestion controlled UDP traffic

Scenario 1c 2 3a 4b

Bottleneck [Mbps] 100 50 10,50,100,50,10 10
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Simulation Results
Dynamic bottleneck
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Simulation Results
PIE with Resource sharing
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Simulation Results
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