
Programmable Networks
Lecture 6 – T4P4S & Traffic
Management
Sándor Laki, PhD
Communication Networks Laboratory

Dept. of Information Systems, Faculty of Informatics

ELTE Eötvös Loránd University

lakis@elte.hu

http://lakis.web.elte.hu

.

mailto:lakis@elte.hu
http://lakis.web.elte.hu/


• T4P4S – a multi target P4 compiler

• Traffic Management – AQM – Drop policies in P4

• Traffic Management – Per Packet Value Core Stateless Resource Sharing

this week



T4P4S
P. Vörös, D. Horpácsi, R. Kitlei, D. Leskó, M. Tejfel, S. Laki: „T4P4S: A Target-independent Compiler for Protocol-
independent Packet Processors”, Proceedings of IEEE International Conference on High Performance Switching

and Routing (HPSR 2018), 17-20 June, 2018 – Bucharest, Romania



Goals of T4P4S

 Extended data plane programmability

 P4 code as a high level abstraction

 Support of different hardware targets

 CPUs, NPUs, FPGA, etc.

 Create a compiler that separates

hardware 

dependent and independent parts

 Easily retargetable P4 compiler



Multi-target Compiler Architecture for P4

3. Switch program

 Compiled from the hardware-
independent C code of the
„Core” and the target-specific
HAL

 Resulting in a hardware 
dependent switch program

P4 program

P4C

Intermediate

Representation

C compiler & 
linker

„Core” code using

NetHAL API calls

NetHAL implementation

for a given target

Switch

program

Core
compiler

1. Hardware-independent „Core”

 Using an Intermediate Representation (IR)

 Compiling IR to a hardware independent C code with NetHAL calls

2. Hardware-dependent „Network Hardware Abstraction Layer” 
(NetHAL)

 Implementing primitives that fulfill the requirements of most hardware

 A static and thin library

 Written by a hardware expert (currently available for DPDK, ODP, native
Linux)



Multi-target Compiler Architecture for P4

P4 program

P4C

Intermediate

Representation

C compiler & 
linker

„Core” code using

NetHAL API calls

NetHAL implementation

for a given target

Switch

program

Core
compiler

 PROs

 Much simpler compiler

 Modularity = better maintainability

 Exchangeable NetHAL = re-targetable 

switch (without rewriting a single line of 

code)

 NetHAL is not affected by changes in the P4 

program

 CONs

 Potentially lower performance

 Difficulties with protocol/hardware-dependent 
optimization

 Communication overhead between the 
components (C function calls)

 Too general vs too detailed NetHAL API
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The „core”

Run to completion model

 Plans to move to a pipeline model

The core implements

 Packet „parsing”

 Control programs

 Actions

 Key calculations for lookup tables

Packet

Ingress port

Abstract
packet type

Packet

representation

rte_mbuf in DPDK

NetHAL

Standard 

metadata

(e.g. ingress port)

Lightweight

parsing

Information about
header instances
(type, pointer, length) 

CORE

Lightweigth

Parsed

Representation

Packet

Description
Controls

Packet parsing

 Lightweight Parsed Representation

 Determining the positions and types of 
headers in the packet

 No "real" parsing or field extraction 

 lazy evaluation



The „core”

Run to completion model

 Plans to move to a pipeline model

The core implements

 Packet „parsing”

 Control programs

 Actions

 Key calculations for lookup tables

Packet

NetHALCORE

Packet

Description

Controls

e.g. Ingress

Apply tables
Key 

calculation

Table config

Counter config

Lookup table

instance

Action Primitives

Controls and actions

 Controls and actions are translated 
to C functions

 Key calculation for lookup tables

 Fields are extracted when needed

 In-place field modifications



Network Hardware Abstraction Library

Low-level generic C API 

 For networking hardwares

Hardware specific implementations of

 States/settings (tables, counters, meters 

etc.)

 Related operations (table 

insert/delete/lookup,

counter increment, etc.)

 Packet RX and TX operations

 Primitive actions (header-related + 

digests)

 Helpers for primitive actions (field-related)

 Implemented as macros for performance reasons

Add and remove headers
add_header(packet_descriptor_t* p, header_reference_t h)
push(packet_descriptor_t* p, header_stack_t h)
remove_header(packet_descriptor_t* p, header_reference_t h)
pop(packet_descriptor_t* p, header_stack_t h)

Field modification & extraction
MODIFY_BYTEBUF_BYTEBUF(pd, dstfield, src, srclen)
MODIFY_INT32_BYTEBUF(pd, dstfield, src, srclen)
MODIFY_INT32_INT32(pd, dstfield, value32)
EXTRACT_INT32(pd, field, dst)

Table & counter operations
exact_lookup(lookup_table_t* t, uint8_t* key)
lpm_lookup(lookup_table_t* t, uint8_t* key)
ternary_lookup(lookup_table_t* t, uint8_t* key)
exact_add(lookup_table_t* t, uint8_t* key, uint8_t* value)
lpm_add(lookup_table_t* t, uint8_t* key, uint8_t depth, uint8_t* value)
ternary_add(lookup_table_t* t, uint8_t* key, uint8_t* mask, uint8_t* value)
increase_counter(int counterid, int index)
read_counter(int counterid, int index)



Evaluation - L2 forwarding

 L2 forwarding

 Source mac learning

 Two exact match tables: src mac + dst
mac

 Testbed setup

 Intel(R) Xeon(R) CPU E5-1660 v4 @ 8c 16t 
3.20GHz, 8x8GB DDR4 SDRAM

 Dual port 100 Gbps NIC 

 Mellanox MT27700 Family [ConnectX-4]

 T4P4S performance is compared to OVS

 Identical implementations
in OpenFlow and P4

 Pseudo random test traffic generated

 A few hundred flows



Evaluation – Mobile Gateway

 Uplink:

 L2, L3 and L4 check (gateway MAC/IP and 
UDP port destination 2152)

 GTP decap, save TEID

 -- Rate limit per bearer (TEID)

 L3 routing towards the Internet + L2 fwd

 Downlink:

 L2 and L3 check (check if destination IP is in
the UE range)

 -- Per user rate limiting

 GTP encap (set bearer in TEID)

 Set destination IP of the base station of the
UE

 L3 routing towards BSTs + L2 fwd



Evaluation – Mobile Gateway

 Uplink:

 L2, L3 and L4 check (gateway MAC/IP and 
UDP port destination 2152)

 GTP decap, save TEID

 -- Rate limit per bearer (TEID)

 L3 routing towards the Internet + L2 fwd

 Downlink:

 L2 and L3 check (check if destination IP is in
the UE range)

 -- Per user rate limiting

 GTP encap (set bearer in TEID)

 Set destination IP of the base station of the
UE

 L3 routing towards BSTs + L2 fwd

Testbed setup

 AMD Ryzen Threadripper 1900X

 Intel Corporation 82599ES 10-Gigabit Dual port 
NIC



T4P4S

 A translator for P4 Switches
 Open source (on GitHub)

 Visit our site: http://p4.elte.hu

 Or the GitHub repository: https://github.com/P4ELTE/t4p4s

 P4-14 and P4-16 language support

 Support of multiple targets 

 by the Hardware Independent Core and Network Hardware Abstraction 
Libraries

 NetHALs for Intel (DPDK), Freescale (ODP SDK), OpenWRT (Native Linux) 
platforms

http://p4.elte.hu/
https://github.com/P4ELTE/t4p4s


Traffic Management - AQM
Active Queue Management in general

Based on course at CMU: 15-441 Computer Networking 



• Problem: Standard loss-based TCP’s congestion control plus large
unmanaged buffers in Internet routers, switches, device drivers,... (a.k.a
Bufferbloat)

• Cause: Latency issues for interactive/multimedia applications

• Solution: AQM tries to signal the onset of congestion by (randomly?) 
dropping/marking packets

• AQM Goals
• Maintain low average queue/latency
• Allow occasional packet bursts
• Break synchronization among TCP flows

Active Queue Management (AQM)



Lecture 20: QOS (c) CMU, 2005-10 17

Traffic and Resource Management 

• Resources statistically shared

• Overload causes congestion

• packet delayed or dropped 

• application performance 

suffer

• Local vs. network wide 

• Transient vs. persistent

• Challenge

• high resource utilization

• high application performance

)t(sourceRe)t(Demand i 
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Resource Management Approaches

• Increase resources

• install new links, faster routers

• capacity planning, provisioning, traffic engineering

• happen at longer timescale

• Reduce or delay demand

• Reactive approach: encourage everyone to reduce or 

delay demand

• Reservation approach: some requests will be rejected 

by the network

)t(sourceRe)t(Demand i 



Lecture 20: QOS (c) CMU, 2005-10 19

Congestion Control in Today’s Internet 

• End-system-only solution (TCP)

• dynamically estimates network  

state

• packet loss signals congestion 

• reduces transmission rate in 

presence of congestion

• routers play  little role

TCP

TCP

TCP

Control 

Time scale
Months

Capacity 

Planning

RTT (ms)

Feedback 

Control
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More Ideas on Traffic Management 

• Improve TCP

• Stay with end-point only architecture 

• Enhance routers to help TCP

• Random Early Discard 

• Enhance routers to control traffic 

• Rate limiting

• Fair Queueing 

• Provide QoS by limiting congestion 
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Router Mechanisms 

• Buffer management: when and which packet to 

drop? 

• Scheduling: which packet to transmit next? 

1

2

Scheduler

flow 1

flow 2

flow n

Classifier

Buffer 

management
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Overview

• Queue management & RED

• Fair-queuing

• Why QOS?

• Integrated services
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Queuing Disciplines

• Each router must implement some queuing discipline

• Queuing allocates both bandwidth and buffer space:

• Bandwidth: which packet to serve (transmit) next 

• Buffer space: which packet to drop next (when required)

• Queuing also affects latency
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Typical Internet Queuing

• FIFO + drop-tail

• Simplest choice

• Used widely in the Internet

• FIFO (first-in-first-out) 

• Implies single class of traffic

• Drop-tail

• Arriving packets get dropped when queue is full regardless of flow or importance

• Important distinction:

• FIFO: scheduling discipline

• Drop-tail: drop policy
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FIFO + Drop-tail Problems

• Leaves responsibility of congestion control completely to the edges 

(e.g., TCP)

• Does not separate between different flows

• No policing: send more packets → get more service

• Synchronization: end hosts react to same events
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FIFO + Drop-tail Problems

• Full queues

• Routers are forced to have have large queues to maintain high utilizations

• TCP detects congestion from loss

• Forces network to have long standing queues in steady-state

• Lock-out problem

• Drop-tail routers treat bursty traffic poorly

• Traffic gets synchronized easily → allows a few flows to monopolize the 

queue space
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Active Queue Management

• Design active router queue management to aid congestion control 

• Why?

• Router has unified view of queuing behavior

• Routers see actual queue occupancy (distinguish queue delay and 

propagation delay)

• Routers can decide on transient congestion, based on workload
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Design Objectives

• Keep throughput high and delay low

• High power (throughput/delay)

• Accommodate bursts

• Queue size should reflect ability to accept bursts rather than steady-

state queuing

• Improve TCP performance with minimal hardware changes
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Lock-out Problem

• Random drop

• Packet arriving when queue is full causes some random packet to be 

dropped

• Drop front

• On full queue, drop packet at head of queue

• Random drop and drop front solve the lock-out problem but not the 

full-queues problem
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Full Queues Problem

• Drop packets before queue becomes full 

(early drop)

• Intuition: notify senders of incipient 

congestion

• Example: early random drop (ERD):

• If qlen > drop level, drop each new packet with 

fixed probability p

• Does not control misbehaving users
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Random Early Detection (RED)

• Detect incipient congestion

• Assume hosts respond to lost packets

• Avoid window synchronization

• Randomly mark packets

• Avoid bias against bursty traffic



Lecture 20: QOS (c) CMU, 2005-10 32

RED Algorithm

• Maintain running average of queue length

• If avg < minth do nothing

• Low queuing, send packets through

• If avg > maxth, drop packet

• Protection from misbehaving sources

• Else mark packet in a manner proportional to queue length

• Notify sources of incipient congestion
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RED Operation

Min threshMax thresh

Average Queue Length

minth maxth

maxP

1.0

Avg queue length

P(drop)
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Explicit Congestion Notification (ECN)
[ Floyd and Ramakrishnan 98]

• Traditional mechanism

• packet drop as implicit congestion signal to end 

systems

• TCP will slow down

• Works well for bulk data transfer

• Does not work well for delay sensitive applications

• audio, WEB, telnet

• Explicit Congestion Notification (ECN)

• borrow ideas from DECBit

• use two bits in IP header

• ECN-Capable Transport (ECT) bit set by sender

• Congestion Experienced (CE) bit set by router 
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Congestion Control Summary

• Architecture: end system detects congestion and slow down

• Starting point: 

• slow start/congestion avoidance

• packet drop detected by retransmission timeout RTO as congestion 

signal

• fast retransmission/fast recovery

• packet drop detected by three duplicate acks

• TCP Improvement:

• NewReno:  better handle multiple losses in one round trip

• SACK: better feedback to source

• NetReno: reduce RTO in high loss rate, small window scenario

• FACK, NetReno: better end system control law
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Congestion Control Summary (II)

• Router support 

• RED: early signaling

• ECN: explicit signaling



• RED: https://github.com/PIFO-TM/ns3-bmv2/blob/master/traffic-
control/examples/p4-src/red/basic/red.p4

RED in P4

https://github.com/PIFO-TM/ns3-bmv2/blob/master/traffic-control/examples/p4-src/red/basic/red.p4


• Uses a Proportional Integral (PI) controller to manage drop probability and 
keep the queue delay around a target value

• Lightweight as it uses delay estimation instead of timestamping

• Uses trend of latency (increasing or decreasing) over time to determine 
the congestion level

PIE AQM



PI control



PIE AQM



• https://github.com/PIFO-TM/ns3-
bmv2/blob/master/traffic-
control/examples/p4-src/pie/pie.p4

PIE in P4

https://github.com/PIFO-TM/ns3-bmv2/blob/master/traffic-control/examples/p4-src/pie/pie.p4


PI2 – for classic TCP



PI2 – for scalable TCP







• Tries to detect the standing queue by measuring minimum sojourn delay 
(delaymin) over a fixed-duration interval (default 100 ms)

• Uses timestamping

• If delaymin > target for at least one interval, enters dropping mode and a 
packet is dropped from the tail (deque)

• Next dropping time: Dropping interval decreases in inverse proportion to 
the square root of the number of drops since the dropping mode was 
entered

• Exits dropping mode if delaymin ≤ target

• No drop when queue is less than 1 MTU

CoDel – controlling delay



• 100 ms is nominal RTT assumed typical on the Internet paths 

• interval = 100 ms; assures protection of normal packet bursts 

• A small target standing queue (5% of nominal RTT) is tolerable for 
achieving better link utilization 

CoDel Assumptions



• https://github.com/ralfkundel/p4-codel/blob/master/srcP4/codel.p4

CoDel in P4

https://github.com/ralfkundel/p4-codel/blob/master/srcP4/codel.p4


Traffic Management – Token
Bucket
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Token Bucket Filter

Operation:

• If bucket fills, tokens are discarded

• Sending a packet of size P uses P 

tokens

• If bucket has P tokens, packet sent 

at max rate, else must wait for 

tokens to accumulate

Tokens enter bucket 

at rate r

Bucket depth b: 

capacity of bucket
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Token Bucket Operation

Tokens

Packet

Overflow

Tokens Tokens

Packet

Enough tokens →

packet goes through,

tokens removed

Not enough tokens 

→ wait for tokens to 

accumulate
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Token Bucket Characteristics

• On the long run, rate is limited to r

• On the short run, a burst of size b can be sent

• Amount of traffic entering at interval T is bounded by:

• Traffic = b + r*T

• Information useful to admission algorithm
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Token Bucket

• Parameters

• r – average rate, i.e., rate at which tokens fill the bucket

• b – bucket depth

• R – maximum link capacity or peak rate (optional parameter)

• A bit is transmitted only when there is an available token

r bps

b bits

<= R bps

regulator

time

bits

b*R/(R-r)

slope R

slope r

Maximum # of bits sent



• https://github.com/PIFO-TM/ns3-bmv2/tree/master/traffic-
control/examples/p4-src/token-bucket

Token bucket in P4

https://github.com/PIFO-TM/ns3-bmv2/tree/master/traffic-control/examples/p4-src/token-bucket


Per Packet Value
Core stateless resource sharing
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Resource sharing nowadays - FQ Illustration

Flow 1

Flow 2

Flow n

I/P O/P

Variation: Weighted Fair Queuing (WFQ)



• High speed access
• Mobile Access Networks, Residental Access Networks, 

Multi-tenant Data Centers, etc.

• Appropriate overprovisioning of backhaul networks
• Difficult & Costly

• Scalable bandwidth sharing supporting QoS is needed in congestion 
situations

• Simple network nodes, no per-user states, service differentiation, rich set of 
policies, etc.

Problem



• Resource sharing policies for all congestion
situations by Throughput-Value Functions (TVF) 

• Packet Marker at the edge of the network
• Stateful, but highly distributed

• Resource Nodes (e.g. routers) aim at 
maximizing the total transmitted Packet Value.

• Stateless and simple

Per Packet Value (PPV)
Resource Sharing

Source 1
2 Mbps

Source 2
6 Mbps

Bottleneck
1 Mbps

Filter by 
Value



PPV – Packet Marking
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Drop minPPV first scheduling [1]

PPV – Resource node proposals
Source 1
2 Mbps

Source 2
6 Mbps

Bottleneck
1 Mbps

Filter by 
Value

PVPIE – PPV with PIE AQM [2]

CSAQM – PPV + CC indep. AQM [3]



Further readings

[1] Sz. Nadas et al., Per Packet Value: A Practical Concept for 
Network Resource Sharing. In proc. of IEEE Globecom 2016.

[2] S. Laki et al., Take Your Own Share of the PIE, In proc. of 
IRTF/ACM ANRW 2017 

[3] Sz. Nadas et al., Towards a Congestion Control-Independent 
Core-Stateless AQM, In proc. of IRTF/ACM ANRW 2018

[4] S. Laki et al., Scalable Per Subscriber QoS with Core-Stateless 
Scheduling, Industrial demo at ACM SIGCOMM 2018

Similar approaches published recently

[5] M. Menth et al, Activity-based congestion management for fair 
bandwidth sharing in trusted packet networks, In proc. of IEEE/IFIP 
NOMS 2016

[6] M. Menth et al., Fair Resource Sharing for Stateless-Core
Packet-Switched Networks with Prioritization, IEEE Access 2018.

[7] R. Bless et al., Policy-oriented AQM Steering, In proc. of IFIP 
Networking 2018.

More

Industrial Demo at SIGCOMM 2018
PPV-based Core Stateless vBNG node implementation



PVPIE results



Simulation Results
Gold and silver TCP sources

Scenario 1c 2 3a 4b

Bottleneck [Mbps] 100 50 10,50,100,50,10 10

Number of TCP flows (Gold-Silver) 1-1, 2-2, 4-4, 8-8 0-0, 1-1, 2-2, 4-4 1-1 5-0

Number of UDP flows 0 3 (Background) 0 2 (Silver)

Number of TCP connections / flow 5 1 5 5

Target Delay [ms] 40 40 40 20

round-trip propegation delay [ms] 40 40 40 100

ECDF window 1 . T 1 . T 1 . T 10 . T
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Simulation Results
with nON-congestion controlled UDP traffic

Scenario 1c 2 3a 4b

Bottleneck [Mbps] 100 50 10,50,100,50,10 10

Number of TCP flows (Gold-Silver) 1-1, 2-2, 4-4, 8-8 0-0, 1-1, 2-2, 4-4 1-1 5-0

Number of UDP flows 0 3 (Background) 0 2 (Silver)

Number of TCP connections / flow 5 1 5 5
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ECDF window 1 . T 1 . T 1 . T 10 . T



Simulation Results
Dynamic bottleneck

Scenario 1c 2 3a 4b

Bottleneck [Mbps] 100 50 10,50,100,50,10 10

Number of TCP flows (Gold-Silver) 1-1, 2-2, 4-4, 8-8 0-0, 1-1, 2-2, 4-4 1-1 5-0
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Simulation Results
PIE with Resource sharing

Scenario 1c 2 3a 4b
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Simulation Results
PIE with Resource sharing

Scenario 1c 2 3a 4b

Bottleneck [Mbps] 100 50 10,50,100,50,10 10

Number of TCP flows (Gold-Silver) 1-1, 2-2, 4-4, 8-8 0-0, 1-1, 2-2, 4-4 1-1 5-0

Number of UDP flows 0 3 (Background) 0 2 (Silver)

Number of TCP connections / flow 5 1 5 5

Target Delay [ms] 40 40 40 20

round-trip propegation delay [ms] 40 40 40 100

ECDF window 1 . T 1 . T 1 . T 10 . T


