
Programmable Networks
Lecture 3 – Stateful applications
Sándor Laki, PhD

Communication Networks Laboratory

Dept. of Information Systems, Faculty of Informatics

ELTE Eötvös Loránd University

lakis@elte.hu

http://lakis.web.elte.hu

Slides were inspired by (and are based on) related courses of Nick McKeown (Stanford), Laurent Vanbever (ETH Zurich), Jennifer Rexford
(Princeton) and Noa Zilberman (Cambridge).

mailto:lakis@elte.hu
http://lakis.web.elte.hu/


• Stateful programming
• How to store state information?

• Fast reroute – an example application

• Probabilistic data structures I
• Bloom filters

this week

Slides were inspired by (and are based on) related courses of 
Nick McKeown (Stanford), Laurent Vanbever (ETH Zurich), 

Jennifer Rexford (Princeton) and Noa Zilberman (Cambridge).



Stateful programming

Slides were inspired by (and are based on) related courses of 
Nick McKeown (Stanford), Laurent Vanbever (ETH Zurich), 

Jennifer Rexford (Princeton) and Noa Zilberman (Cambridge).



stateless objects reinitialized for each packet
variables
headers

stateful objects keep state between packets
tables
registers
counters
meters
…

stateless vs stateful

Slides were inspired by (and are based on) related courses of 
Nick McKeown (Stanford), Laurent Vanbever (ETH Zurich), 

Jennifer Rexford (Princeton) and Noa Zilberman (Cambridge).



tables managed by the control plane

register (extern in v1model) store arbitrary data
can be managed by both data and control planes

counter (extern in v1model) count events
like number of table entry matches

meter (extern in v1model) assign „colors” to packets
rate-limiting

stateful objects

Slides were inspired by (and are based on) related courses of 
Nick McKeown (Stanford), Laurent Vanbever (ETH Zurich), 

Jennifer Rexford (Princeton) and Noa Zilberman (Cambridge).



stores small amount of arbitrary data

registers are assigned in arrays

register<Type>(N) reg;

reg.write(0,value);

reg.read(result,0);

register

0

1

2

3

4

5

6

…

N-1

Type

N

Slides were inspired by (and are based on) related courses of 
Nick McKeown (Stanford), Laurent Vanbever (ETH Zurich), 

Jennifer Rexford (Princeton) and Noa Zilberman (Cambridge).



register<bit<48>>(16384) last_seen;

action get_inter_packet_gap(out bit<48> interval, bit<32> flow_id)

{

bit<48> last_pkt_ts;

/* Get the time the previous packet was seen */

last_seen.read(last_pkt_ts, flow_id);

/* Calculate the time interval */

interval = standard_metadata.ingress_global_timestamp – last_pkt_ts;

/* Update the register with the new timestamp */

last_seen.write(flow_id, standard_metadata.ingress_global_timestamp);

...

}

register – calculating inter packet gap

Slides were inspired by (and are based on) related courses of 
Nick McKeown (Stanford), Laurent Vanbever (ETH Zurich), 

Jennifer Rexford (Princeton) and Noa Zilberman (Cambridge).



example: stateful firewall

Slides were inspired by (and are based on) related courses of 
Nick McKeown (Stanford), Laurent Vanbever (ETH Zurich), 

Jennifer Rexford (Princeton) and Noa Zilberman (Cambridge).



stateful firewall

Slides were inspired by (and are based on) related courses of 
Nick McKeown (Stanford), Laurent Vanbever (ETH Zurich), 

Jennifer Rexford (Princeton) and Noa Zilberman (Cambridge).



control MyIngress(...) {
register<bit<1>>(4096) known_flows;
...
apply {

meta.flow_id = ... // hash(5-tuple)
if (hdr.ipv4.isValid()){

if (hdr.tcp.isValid()){
if (standard_metadata.ingress_port == 1){

if (hdr.tcp.syn == 1){
known_flows.write(meta.flow_id, 1);

}
}
if (standard_metadata.ingress_port == 2){

known_flows.read(meta.flow_is_known, meta.flow_id);
if (meta.flow_is_known != 1){

drop(); return;
}

}
}
ipv4_lpm.apply();

}
}

}

stateful firewall
Registers for mainining
established connections

Add to register if a new
packet with syn flag arrives
from internal network.

Drop all packets comming from
outside that do not belong to
existing connections.

Slides were inspired by (and are based on) related courses of 
Nick McKeown (Stanford), Laurent Vanbever (ETH Zurich), 

Jennifer Rexford (Princeton) and Noa Zilberman (Cambridge).



counting number of bytes or packets

counters are assigned in arrays

counter(N,CounterType) c;

c.count(0);

counter

0

1

2

3

4

5

6

…

N-1

CounterType: enum { packet, 
bytes, packets_and_bytes }

N Read by the
control plane

Slides were inspired by (and are based on) related courses of 
Nick McKeown (Stanford), Laurent Vanbever (ETH Zurich), 

Jennifer Rexford (Princeton) and Noa Zilberman (Cambridge).



control MyIngress(...) {

counter(512, CounterType.packets_and_bytes) port_counter;

apply {

port_counter.count((bit<32>) standard_metadata.ingress_port);

}

}

example - port statistics
ingress port is used as counter idx

Slides were inspired by (and are based on) related courses of 
Nick McKeown (Stanford), Laurent Vanbever (ETH Zurich), 

Jennifer Rexford (Princeton) and Noa Zilberman (Cambridge).



RuntimeCmd: counter_read MyIngress.port_counter 1

MyIngress.port_counter[1]= BmCounterValue(packets=13, bytes=1150)

reading counter values
from the control plane

control MyIngress(...) {

counter(512, CounterType.packets_and_bytes) port_counter;

apply {

port_counter.count((bit<32>) standard_metadata.ingress_port);

}

}
Slides were inspired by (and are based on) related courses of 

Nick McKeown (Stanford), Laurent Vanbever (ETH Zurich), 
Jennifer Rexford (Princeton) and Noa Zilberman (Cambridge).



special counters attached to tables

direct counters

Slides were inspired by (and are based on) related courses of 
Nick McKeown (Stanford), Laurent Vanbever (ETH Zurich), 

Jennifer Rexford (Princeton) and Noa Zilberman (Cambridge).



control MyIngress(...) {
direct_counter(CounterType.packets_and_bytes) direct_port_counter;

table count_table {
key = {

standard_metadata.ingress_port: exact;
}
actions = {

NoAction;
}
default_action = NoAction;
counters = direct_port_counter;
size = 512;

}

apply {
count_table.apply();

}
}

port statistics in a bit different way

Attach counter
to the table

Slides were inspired by (and are based on) related courses of 
Nick McKeown (Stanford), Laurent Vanbever (ETH Zurich), 

Jennifer Rexford (Princeton) and Noa Zilberman (Cambridge).



meters

Slides were inspired by (and are based on) related courses of 
Nick McKeown (Stanford), Laurent Vanbever (ETH Zurich), 

Jennifer Rexford (Princeton) and Noa Zilberman (Cambridge).



meters

Slides were inspired by (and are based on) related courses of 
Nick McKeown (Stanford), Laurent Vanbever (ETH Zurich), 

Jennifer Rexford (Princeton) and Noa Zilberman (Cambridge).



meters are assigned in arrays

meter(N,MeterType) m;

m.execute_meter<T>(0, result);

meter

0

1

2

3

4

5

6

…

N-1

MeterType: enum { packet, 
bytes}

N Configuration
by the control

plane

Slides were inspired by (and are based on) related courses of 
Nick McKeown (Stanford), Laurent Vanbever (ETH Zurich), 

Jennifer Rexford (Princeton) and Noa Zilberman (Cambridge).



example: rate-limiter

Slides were inspired by (and are based on) related courses of 
Nick McKeown (Stanford), Laurent Vanbever (ETH Zurich), 

Jennifer Rexford (Princeton) and Noa Zilberman (Cambridge).



example: rate-limiter

Slides were inspired by (and are based on) related courses of 
Nick McKeown (Stanford), Laurent Vanbever (ETH Zurich), 

Jennifer Rexford (Princeton) and Noa Zilberman (Cambridge).



control MyIngress(...) {
meter(32w16384, MeterType.packets) my_meter;

action m_action(bit<32> meter_index) {
my_meter.execute_meter<bit<32>>(meter_index, meta.meter_tag);

}

table m_read {
key = { hdr.ethernet.srcAddr: exact; }
actions = { m_action; NoAction; }
...

}

table m_filter {
key = { meta.meter_tag: exact; }
actions = { drop; NoAction; }
...

}

apply {
m_read.apply();
m_filter.apply();

}
}

packet meter

execute meter &
store the color
in metafield
meter_tag

Packet drop based
on meter_tag

Slides were inspired by (and are based on) related courses of 
Nick McKeown (Stanford), Laurent Vanbever (ETH Zurich), 

Jennifer Rexford (Princeton) and Noa Zilberman (Cambridge).



direct meters assigned to tables

Slides were inspired by (and are based on) related courses of 
Nick McKeown (Stanford), Laurent Vanbever (ETH Zurich), 

Jennifer Rexford (Princeton) and Noa Zilberman (Cambridge).



control MyIngress(...) {
direct_meter<bit<32>>(MeterType.packets) my_meter;

action m_action(bit<32> meter_index) {
my_meter.read(meta.meter_tag);

}

table m_read {
key = { hdr.ethernet.srcAddr: exact; }
actions = { m_action; NoAction; }
meters = my_meter;

...
}

table m_filter { ... }

apply {
m_read.apply();
m_filter.apply();

}
}

direct meter for a rate limiting use case

direct meter

read meter

Add a direct_meter instance
to the table

Slides were inspired by (and are based on) related courses of 
Nick McKeown (Stanford), Laurent Vanbever (ETH Zurich), 

Jennifer Rexford (Princeton) and Noa Zilberman (Cambridge).



data plane control plane

read write/modify read write/modify

table apply() no yes yes

register yes – read() yes – write() yes yes

counter no yes – count() yes reset only

meter yes yes no configuration only

stateful summary

Slides were inspired by (and are based on) related courses of 
Nick McKeown (Stanford), Laurent Vanbever (ETH Zurich), 

Jennifer Rexford (Princeton) and Noa Zilberman (Cambridge).



An example application
https://www.net.t-labs.tu-berlin.de/~stefan/neat18.pdf

https://www.youtube.com/watch?v=G4L2ys-_W9w#t=26m26s

https://p4.org/assets/P4WS_2018/Marco_Chiesa.pdf

Slides were inspired by (and are based on) related courses of 
Nick McKeown (Stanford), Laurent Vanbever (ETH Zurich), 

Jennifer Rexford (Princeton) and Noa Zilberman (Cambridge).

https://www.net.t-labs.tu-berlin.de/~stefan/neat18.pdf
https://www.youtube.com/watch?v=G4L2ys-_W9w#t=26m26s
https://p4.org/assets/P4WS_2018/Marco_Chiesa.pdf


Probabilistic data structures I.
Bloom filters

Slides were inspired by (and are based on) related courses of 
Nick McKeown (Stanford), Laurent Vanbever (ETH Zurich), 

Jennifer Rexford (Princeton) and Noa Zilberman (Cambridge).



building blocks

built-in stateful data structures
arrays of registers, counters or meters

lots of limitations
limited number of operations and memory

programming advanced data structs

Slides were inspired by (and are based on) related courses of 
Nick McKeown (Stanford), Laurent Vanbever (ETH Zurich), 

Jennifer Rexford (Princeton) and Noa Zilberman (Cambridge).



How to implement a set
1st approach – separate chaining

-

-

-

-

-

0

10

ValX

Slides were inspired by (and are based on) related courses of 
Nick McKeown (Stanford), Laurent Vanbever (ETH Zurich), 

Jennifer Rexford (Princeton) and Noa Zilberman (Cambridge).



How to implement a set
1st approach – separate chaining

-

-

-

-

-

0

10

ValX

Val1 Val12

Val3

Val23

Val11 Val5

ValX

Slides were inspired by (and are based on) related courses of 
Nick McKeown (Stanford), Laurent Vanbever (ETH Zurich), 

Jennifer Rexford (Princeton) and Noa Zilberman (Cambridge).



How to implement a set
1st approach – separate chaining

-

-

-

-

-

0

10

ValX

Val1 Val12

Val3

Val23

Val11 Val5

ValX

having N elements & M cells:

average list size: N/M
worst-case: N

Slides were inspired by (and are based on) related courses of 
Nick McKeown (Stanford), Laurent Vanbever (ETH Zurich), 

Jennifer Rexford (Princeton) and Noa Zilberman (Cambridge).



How to implement a set
1st approach – separate chaining

-

-

-

-

-

0

10

ValX

Val1 Val12

Val3

Val23

Val11 Val5

ValX

having N elements & M cells:

average list size: N/M
worst-case: N

Pros: 
accurate and fast in the avg. case

Cons:
Only works in hw if N is small (<100)

Slides were inspired by (and are based on) related courses of 
Nick McKeown (Stanford), Laurent Vanbever (ETH Zurich), 

Jennifer Rexford (Princeton) and Noa Zilberman (Cambridge).



How to implement a set
2nd approach – with probabilistic output

0

0

0

0

0

0

0

0

0

0

0

10

1-bit cells
Slides were inspired by (and are based on) related courses of 

Nick McKeown (Stanford), Laurent Vanbever (ETH Zurich), 
Jennifer Rexford (Princeton) and Noa Zilberman (Cambridge).



How to implement a set
2nd approach – with probabilistic output

0

0

0

0

0

0

1

0

0

0

0

10

ValX

1-bit cells

insert ValX

Slides were inspired by (and are based on) related courses of 
Nick McKeown (Stanford), Laurent Vanbever (ETH Zurich), 

Jennifer Rexford (Princeton) and Noa Zilberman (Cambridge).



How to implement a set
2nd approach – with probabilistic output

0

0

1

0

0

0

1

0

0

0

0

10

Hello

1-bit cells

insert Hello

Slides were inspired by (and are based on) related courses of 
Nick McKeown (Stanford), Laurent Vanbever (ETH Zurich), 

Jennifer Rexford (Princeton) and Noa Zilberman (Cambridge).



How to implement a set
2nd approach – with probabilistic output

0

0

1

0

0

0

1

0

1

0

0

10

World

1-bit cells

insert World

Slides were inspired by (and are based on) related courses of 
Nick McKeown (Stanford), Laurent Vanbever (ETH Zurich), 

Jennifer Rexford (Princeton) and Noa Zilberman (Cambridge).



How to implement a set
2nd approach – with probabilistic output

0

0

1

0

0

0

1

0

0

0

0

10

Hello

1-bit cells

is Hello in the set?
1=Yes

Slides were inspired by (and are based on) related courses of 
Nick McKeown (Stanford), Laurent Vanbever (ETH Zurich), 

Jennifer Rexford (Princeton) and Noa Zilberman (Cambridge).



How to implement a set
2nd approach – with probabilistic output

0

0

1

0

0

0

1

0

0

0

0

10

Bye

1-bit cells

is Bye in the set?
0=No

Slides were inspired by (and are based on) related courses of 
Nick McKeown (Stanford), Laurent Vanbever (ETH Zurich), 

Jennifer Rexford (Princeton) and Noa Zilberman (Cambridge).



How to implement a set
2nd approach – with probabilistic output

0

0

1

0

0

0

1

0

1

0

0

10

P4

1-bit cells

is P4 in the set?

1=Yes, but it is false positive

Slides were inspired by (and are based on) related courses of 
Nick McKeown (Stanford), Laurent Vanbever (ETH Zurich), 

Jennifer Rexford (Princeton) and Noa Zilberman (Cambridge).



How to implement a set
2nd approach – with probabilistic output

0

0

1

0

0

0

1

0

0

0

0

10

Hello

1-bit cells

insert Hello

simple approach

having N elements and M cells

probability of an element to
be mapped into a particular cell 1/M

probability of an element not to
be mapped into a particular cell 1-1/M

probability of a cell to be 0 (1-1/M)N

false positive rate (FPR) 1-(1-1/M)N

false negative rate 0

Slides were inspired by (and are based on) related courses of 
Nick McKeown (Stanford), Laurent Vanbever (ETH Zurich), 

Jennifer Rexford (Princeton) and Noa Zilberman (Cambridge).



How to implement a set
2nd approach – with probabilistic output

0

0

1

0

0

0

1

0

0

0

0

10

Hello

1-bit cells

insert Hello

N M FPR
1000 10000 9.5%
1000 100000 1%

Pros: 
simple and only one operationo per insertion and query

Cons: 
roughly 100x more cells are required then N for a 1% FPR

Slides were inspired by (and are based on) related courses of 
Nick McKeown (Stanford), Laurent Vanbever (ETH Zurich), 

Jennifer Rexford (Princeton) and Noa Zilberman (Cambridge).



How to implement a set
3rd approach – Bloom Filters

0

0

0

0

0

0

0

0

0

0

0

10

1-bit cells
Slides were inspired by (and are based on) related courses of 

Nick McKeown (Stanford), Laurent Vanbever (ETH Zurich), 
Jennifer Rexford (Princeton) and Noa Zilberman (Cambridge).



How to implement a set
2nd approach – with probabilistic output

0

1

0

0

0

0

1

0

0

1

0

10

ValX

1-bit cells

insert ValX

hash #2

ValX

hash #3

ValX

hash #1

Slides were inspired by (and are based on) related courses of 
Nick McKeown (Stanford), Laurent Vanbever (ETH Zurich), 

Jennifer Rexford (Princeton) and Noa Zilberman (Cambridge).



How to implement a set
2nd approach – with probabilistic output

1

1

0

0

0

1

1

0

0

1

0

10

Hello

1-bit cells

insert Hello

hash #2

Hello

hash #3

Hello

hash #1

Slides were inspired by (and are based on) related courses of 
Nick McKeown (Stanford), Laurent Vanbever (ETH Zurich), 

Jennifer Rexford (Princeton) and Noa Zilberman (Cambridge).



How to implement a set
2nd approach – with probabilistic output

1

1

0

0

0

1

1

0

1

1

0

10

World

1-bit cells

insert World

hash #2

World

hash #3

World

hash #1

Slides were inspired by (and are based on) related courses of 
Nick McKeown (Stanford), Laurent Vanbever (ETH Zurich), 

Jennifer Rexford (Princeton) and Noa Zilberman (Cambridge).



How to implement a set
2nd approach – with probabilistic output

1

1

0

0

0

1

1

0

1

1

0

10

World

1-bit cells

insert World

hash #2

World

hash #3

World

hash #1 An element is considered in
the set if all the hash values
map to a cell with 1

An element is not in the set if
at least one hash value maps to
a cell with 0

Slides were inspired by (and are based on) related courses of 
Nick McKeown (Stanford), Laurent Vanbever (ETH Zurich), 

Jennifer Rexford (Princeton) and Noa Zilberman (Cambridge).



How to implement a set
2nd approach – with probabilistic output

1

1

0

0

0

1

1

0

0

1

0

10

Hello

1-bit cells

is Hello in the set?

hash #2

Hello

hash #3

Hello

hash #1

YES, it is.

An element is considered in
the set if all the hash values
map to a cell with 1

An element is not in the set if
at least one hash value maps to
a cell with 0

Slides were inspired by (and are based on) related courses of 
Nick McKeown (Stanford), Laurent Vanbever (ETH Zurich), 

Jennifer Rexford (Princeton) and Noa Zilberman (Cambridge).



How to implement a set
2nd approach – with probabilistic output

1

1

0

0

0

1

1

0

1

1

0

10

Bye

1-bit cells

Is Bye in the set?

hash #2

Bye

hash #3

Bye

hash #1 An element is considered in
the set if all the hash values
map to a cell with 1

An element is not in the set if
at least one hash value maps to
a cell with 0

No,it isn’t.

Slides were inspired by (and are based on) related courses of 
Nick McKeown (Stanford), Laurent Vanbever (ETH Zurich), 

Jennifer Rexford (Princeton) and Noa Zilberman (Cambridge).



How to implement a set
2nd approach – with probabilistic output

0

1

0

0

0

0

1

0

0

1

0

10

42

1-bit cells

Is 42 in the set?

hash #2

42

hash #3

42

hash #1

FALSE POSITIVE

An element is considered in
the set if all the hash values
map to a cell with 1

An element is not in the set if
at least one hash value maps to
a cell with 0

Slides were inspired by (and are based on) related courses of 
Nick McKeown (Stanford), Laurent Vanbever (ETH Zurich), 

Jennifer Rexford (Princeton) and Noa Zilberman (Cambridge).



How to implement a set
2nd approach – with probabilistic output

0

1

0

0

0

0

1

0

0

1

0

10

42

1-bit cells

Is 42 in the set?

hash #2

42

hash #3

42

hash #1

FALSE POSITIVE

N elements, M cells and K hash functions

probability of an element to be
mapped into a particular cell 1/M

probability of an element not to
be mapped into a particular cell 1-1/M

probability of a cell to be 0 (1-1/M)KN

false positive rate (1- (1-1/M)KN)K

false negative rate 0

Slides were inspired by (and are based on) related courses of 
Nick McKeown (Stanford), Laurent Vanbever (ETH Zurich), 

Jennifer Rexford (Princeton) and Noa Zilberman (Cambridge).



How to implement a set
2nd approach – with probabilistic output

0

1

0

0

0

0

1

0

0

1

0

10

42

1-bit cells

Is 42 in the set?

hash #2

42

hash #3

42

hash #1

N M K FPR
1000 10000 7 0.82%
1000 100000 7 ~0%

Pros: 
10x less memory usage than the simple approach

Cons: 
slightly more operations required (e.g. 7 instead of 1)

Slides were inspired by (and are based on) related courses of 
Nick McKeown (Stanford), Laurent Vanbever (ETH Zurich), 

Jennifer Rexford (Princeton) and Noa Zilberman (Cambridge).



• N elements

• M cells

• K hash functions

• FP false positive rate

Dimension your Bloom Filter

Slides were inspired by (and are based on) related courses of 
Nick McKeown (Stanford), Laurent Vanbever (ETH Zurich), 

Jennifer Rexford (Princeton) and Noa Zilberman (Cambridge).



• N elements

• M cells

• K hash functions

• FP false positive rate

Dimension your Bloom Filter

Slides were inspired by (and are based on) related courses of 
Nick McKeown (Stanford), Laurent Vanbever (ETH Zurich), 

Jennifer Rexford (Princeton) and Noa Zilberman (Cambridge).



Slides were inspired by (and are based on) related courses of 
Nick McKeown (Stanford), Laurent Vanbever (ETH Zurich), 

Jennifer Rexford (Princeton) and Noa Zilberman (Cambridge).



Slides were inspired by (and are based on) related courses of 
Nick McKeown (Stanford), Laurent Vanbever (ETH Zurich), 

Jennifer Rexford (Princeton) and Noa Zilberman (Cambridge).



Implementation in P4 
with 2 hash functions

Slides were inspired by (and are based on) related courses of 
Nick McKeown (Stanford), Laurent Vanbever (ETH Zurich), 

Jennifer Rexford (Princeton) and Noa Zilberman (Cambridge).



Slides were inspired by (and are based on) related courses of 
Nick McKeown (Stanford), Laurent Vanbever (ETH Zurich), 

Jennifer Rexford (Princeton) and Noa Zilberman (Cambridge).



Because deletions are not possible, the controller may need to regularly 
reset the bloom filters

Resetting a bloom filter takes some time during which it is not usable

Common trick: use two bloom filters and use one when the controller 
resets the other one

Slides were inspired by (and are based on) related courses of 
Nick McKeown (Stanford), Laurent Vanbever (ETH Zurich), 

Jennifer Rexford (Princeton) and Noa Zilberman (Cambridge).



Why deletion is not easy?

Slides were inspired by (and are based on) related courses of 
Nick McKeown (Stanford), Laurent Vanbever (ETH Zurich), 

Jennifer Rexford (Princeton) and Noa Zilberman (Cambridge).



Counting Bloom Filters

Solution

Slides were inspired by (and are based on) related courses of 
Nick McKeown (Stanford), Laurent Vanbever (ETH Zurich), 

Jennifer Rexford (Princeton) and Noa Zilberman (Cambridge).


