communication '

.,/

A
' networks laboratory

Eotvos Lorand
University

Programmable Networks
Lecture 2 — P4 basics & lookups

Sandor Laki, PhD

Communication Networks Laboratory

Dept. of Information Systems, Faculty of Informatics
ELTE EGtvés Lorand University

lakis@elte.hu

http://lakis.web.elte.hu

Slides were inspired by (and are based on) related courses of Nick McKeown (Stanford), Laurent Vanbever (ETH Zurich), Jennifer Rexford
(Princeton) and Noa Zilberman (Cambridge).

mailto:lakis@elte.hu
http://lakis.web.elte.hu/

this week

* P4 environment
* needed for programming in P4

* P4 language

* Language constructs

 Fast lookup
* LPM lookup in software and hardware, packet classification

Slides were inspired by (and are based on) related courses of
Nick McKeown (Stanford), Laurent Vanbever (ETH Zurich),
Jennifer Rexford (Princeton) and Noa Zilberman (Cambridge).

communication '

.

' networks laboratory

P4 environment

Slides were inspired by (and are based on) related courses of
Nick McKeown (Stanford), Laurent Vanbever (ETH Zurich),
Jennifer Rexford (Princeton) and Noa Zilberman (Cambridge).

P4 history

 May 2013: Initial idea and the name “P4”
 July 2014: First paper (SIGCOMM CCR)

e Aug 2014: First P4-14 Draft Specification (v0.9.8)
e Sep 2014: P4-14 Specification released (v1.0.0)
e Jan 2015: P4-14 v1.0.1

* Mar 2015: P4-14 v1.0.2

Nov 2016: P4-14 v1.0.3

May 2017: P4-14v1.0.4

Apr 2016: P4-16 — first commits

Dec 2016: First P4-16 Draft Specification

* May 2017: P4-16 Specification released

Slides were inspired by (and are based on) related courses of
Nick McKeown (Stanford), Laurent Vanbever (ETH Zurich),
Jennifer Rexford (Princeton) and Noa Zilberman (Cambridge).

P4-16 introduces the concept of architecure

* P4 Target:
* A model of a specific hardware implementation
* The hardware backend running the compiled P4 code

e P4 Architecture:

* An APl to program a target
* P4 programmable components, externs, fixed components

Slides were inspired by (and are based on) related courses of
Nick McKeown (Stanford), Laurent Vanbever (ETH Zurich),
Jennifer Rexford (Princeton) and Noa Zilberman (Cambridge).

recap: how to program a P4 target

Target

Data Plane Program Control plane

P4 program Compiler

Architecture description . Data Plane Tables Externs

&
4
L
L
L4
L
LJ
L
&
&
L4

target-specific
User supplied binary

Vendor supplied o
des were inspired by (and are based on) related courses of

Nick McKeown (Stanford), Laurent Vanbever (ETH Zurich),
Jennifer Rexford (Princeton) and Noa Zilberman (Cambridge).

le Architectures and Targets
N\ V1Model

—11]
—11]
™
—111
= —11]

Exam

\
‘-II
LAAA AL

|V

SimpleSumeSwitch

HHHE

~, Portable Switch Architecture (PSA)

= -
I > . é é
™
\V

|V

o
L

Anything

f:l:

communication '

|II

we’ll rely on the simple ,vlmode

. networks laboratory

LY

i —

| P O
A U
L | N R Queues 1
p —» S and/or ™* p
U £ Buffers U
T R Ingress Match+Action Egress Match+Action | T
| Packet Modifications + Packet Modifications

Egress Selection

https://p4.org/p4-spec/p4-14/v1.0.4/tex/p4.pdf

Slides were inspired by (and are based on) related courses of
Nick McKeown (Stanford), Laurent Vanbever (ETH Zurich),
Jennifer Rexford (Princeton) and Noa Zilberman (Cambridge).

metadata

Each architecture defines the metadata it supports, including both standard
and intrinsic ones

Intrinsic metadata: in addition to the standard metadata fields to offer more
advanced features.

struct standard_metadata_t { bit<48> ingress_global timestamp;
bit<9> ingress_port; bit<48> egress_global timestamp;
bit<9> egress_spec; bit<32> If field list;
bit<9> egress_port; bit<16> mcast_grp;
bit<32> clone_spec; bit<32> resubmit_flag;
bit<32> instance_type; bit<16> egress_rid;
bit<1> drop; bit<1> checksum_error;
bit<16> recirculate_port; bit<32> recirculate_flag;
bit<32> packet_length; }

bit<32> eng_timestamp;
bit<19> enqg_qgdepth;
bit<32> deq_timedelta;

bit<19> deq qdepth; Slides were inspired by (and are based on) related courses of
- Nick McKeown (Stanford), Laurent Vanbever (ETH Zurich),
error parser_error,

Jennifer Rexford (Princeton) and Noa Zilberman (Cambridge).

externs

Black-box functions implemented by the target whose interface is known:

* Most targets contain specialized components
which cannot be expressed in P4 (e.g. complex computations)

e but P4-16 should be target-independent
in contrast to P4-14

e Externs are similar to Java interfaces
only the signature is known, not the implementation

Slides were inspired by (and are based on) related courses of
Nick McKeown (Stanford), Laurent Vanbever (ETH Zurich),
Jennifer Rexford (Princeton) and Noa Zilberman (Cambridge).

extern examples —vlimodel

extern register<T> {
register(bit<32> size);
void read(out T result, in bit<32> index);
void write(in bit<32> index, in T value);

extern void random<T>(out T result, in T lo, in T hi);
extern void hash<O, T, D, M>(out O result, in HashAlgorithm algo, in T base, in D data, in M max);
extern void update_checksum<T, O>(in bool condition, in T data, inout O checksum, HashAlgorithm algo);

For more visit: https://github.com/p4lang/p4c/blob/master/p4include/vimodel.p4

Slides were inspired by (and are based on) related courses of
Nick McKeown (Stanford), Laurent Vanbever (ETH Zurich),
Jennifer Rexford (Princeton) and Noa Zilberman (Cambridge).

https://github.com/p4lang/p4c/blob/master/p4include/v1model.p4

architectures may have different metadata
and externs

NetFPGA-SUME

2 % SATA Micro-5D Expansion Interfaces Configuration

|||||||

® . = - I. . .I‘.-:':__" = J @
—] -.-C. . . . ; o R LT R
4 x SFP+ \ T o P g ST '
I . " e - F - . 4 \
. o S - 1 .:. i 3 o QD R“ +
Virtex 7 FPGA

2% DDR3 PCle x8 Gen. 3
SoDIMM

Slides were inspired by (and are based on) related courses of
Nick McKeown (Stanford), Laurent Vanbever (ETH Zurich),

Source: http://isfpga.org/fpga2018/shices i FPGAR01-8: P tutioriakipdfmbridge).

http://isfpga.org/fpga2018/slides/FPGA-2018-P4-tutorial.pdf

P4->NetFPGA Compilation Overview

P4 Program

Xilinx P4, Compiler

NetFPGA Reference Switch

10GE

DMA

Input Arbiter

SimpleSume
Switch i

Simple Sume Switch Architecture

- Deparser

Match-
action
pipeline

iredasesian)

T ' lides were inspired by (and 4
A

10GE

relBXed coursq

SHEHE

Output Queues

e L e E——

DMA

Nick McKeown (Stanford), Laurent Vanbever (ETH Zurich),

Source: http://isfpga.org/fpga2018/shices i FPGAR01-8: P tutioriakipdfmbridge).

http://isfpga.org/fpga2018/slides/FPGA-2018-P4-tutorial.pdf

Standard Metadata in SimpleSumeSwitch Architecture

/* standard sume switch metadata */
struct sume metadata t {

bit<16> .
bit<16>
bit<16>
bit<16>
bit<16>

bit<8> send dlg to cpu; // send digest data to CPU

dma q size;
nf3 g size;
nf2 q size;
nfl q size;
nf0 . g _size;

r

b1t<8> dst port /7] one-hot encoded
bit<8> src port; // one-hot encoded
bit<16> pkt len; // unsigned int

** g =ize — size of each output queue, measured in terms of 32-byte words, when packet starts being

procesaed by the P4 program
*src_port/dst port —one-hot encoded, easy to do multicast

suser metadataldigest

_data — structs defined by the user

Slides were inspired by (and are based on) related courses of
Nick McKeown (Stanford), Laurent Vanbever (ETH Zurich),

Source: http://isfpga.org/fpga2018/shices i FPGAR01-8: P tutioriakipdfmbridge).

http://isfpga.org/fpga2018/slides/FPGA-2018-P4-tutorial.pdf

P4->NetFPGA Extern Function library

* Implement platform specific functions
+ Black box to P4 program

Implemented in HDL
Stateless - reinitialized for each packet
Stateful — keep state between packets

« Xilinx Annotations
* @Xilinx MaxLatency () —maximum number of clock cycles an extern function needs to
complete
* @Xilinx ControlWidth () —size in bits of the address space to allocate to an extern
function

Slides were inspired by (and are based on) related courses of
Nick McKeown (Stanford), Laurent Vanbever (ETH Zurich),

Source: http://isfpga.org/fpga2018/shices i FPGAR01-8: P tutioriakipdfmbridge).

http://isfpga.org/fpga2018/slides/FPGA-2018-P4-tutorial.pdf

communication '

.

' networks laboratory

P4 language

Slides were inspired by (and are based on) related courses of
Nick McKeown (Stanford), Laurent Vanbever (ETH Zurich),
Jennifer Rexford (Princeton) and Noa Zilberman (Cambridge).

#include <core.p4> Include libraries

#include <vlmodel.p4>

const bit<16> TYPE_IPV4 = 0x800;

typedef bit<32> ip4Addr _t; Declarations
header ipv4d_t{...}

struct headers {...}

parser MyParser(...) {
state start {...}
state parse_ethernet {...}
state parse_ipv4 {...}

Parse packet headers

}

control Mylngress(...) {
action ipv4_forward(...) {...}

table ipv4_lpm {...}

Control flow to modify/forward

apply { packets
if(...) {.)
}

}

control MyDeparser(...) {...} Assemble (modified) packet

V1Switch(
MyParser(),
MyVerifyChecksum(),
Mylngress(),
MyEgress(),
MyComputeChecksum(),

main()

Slides were inspired by (and are based on) related courses of
_ MyDeparser() Nick McKeown (Stanford), Laurent Vanbever (ETH Zurich),
) main; Jennifer Rexford (Princeton) and Noa Zilberman (Cambridge).

communication '

P4-16 is a statically-typed language with base types

bool
bit<W>
int<W>
varbit<W>
match_kind
error

void

oot

StrAg

Boolean value

Bit-string of width W

Signed integer of width W

Bit-string of dynamic length <W

describes ways to match table keys

used to sighal errors

no values, used in few restricted circumstances
not supported

not supported

Slides were inspired by (and are based on) related courses of
Nick McKeown (Stanford), Laurent Vanbever (ETH Zurich),
Jennifer Rexford (Princeton) and Noa Zilberman (Cambridge).

... and operators to derive composed ones

e Header
Header stack
e Header union

Struct
e Tuple

* Enum
* etc.

Slides were inspired by (and are based on) related courses of
Nick McKeown (Stanford), Laurent Vanbever (ETH Zurich),
Jennifer Rexford (Princeton) and Noa Zilberman (Cambridge).

header

Parsing a packet using extract() fills in the fields
of the header from a network packet.
header Ethernet_h {
bit<48> dstAddr: A successful extract() sets to true
the validity bit of the extracted header

bit<48> srcAddr;

bit<16> etherType; Operations on header instances in the control
} blocks: isValid(), setValid() and setinvalid()
Ethernet_h ethernetHeader; Declaration

Similar to struct in C containing the different fields plus a hidden "validity" field

Slides were inspired by (and are based on) related courses of
Nick McKeown (Stanford), Laurent Vanbever (ETH Zurich),
Jennifer Rexford (Princeton) and Noa Zilberman (Cambridge).

header

header Ethernet_h { header Mpls_h { header_union IP_h {
bit<48> dstAddr; bit<20> label; IPv4 _h v4;
bit<48> srcAddr; bit<3> tc; IPv6_h v6;
bit<16> etherType; bit<1> bos; }
) bit<8> ttl;
} Either IPv4 or IPv6
header
Mpls_h[10] mpls; (only one alternative)

Arra of up to 10

Slides Wer inspired by (and are based on) related courses of

MH\S (jj)g)gjq% Vanbever (ETH Zurich),
Jen ex Zilberman (Cambridge).

struct & tuple

struct standard_metadata_t { tuple<bit<32>, bool> x;
bit<9> ingress_port; x = { 10, false };
bit<9> egress_spec;
bit<9> egress_port;

Unordered collection of
unnamed members
Unordered collection
of named members

Slides were inspired by (and are based on) related courses of
Nick McKeown (Stanford), Laurent Vanbever (ETH Zurich),
Jennifer Rexford (Princeton) and Noa Zilberman (Cambridge).

others

enum Priority {High, Low};
typedef bit<48> macAddr _t;
extern ...

parser ...

control ...

package ...

Slides were inspired by (and are based on) related courses of
Nick McKeown (Stanford), Laurent Vanbever (ETH Zurich),
Jennifer Rexford (Princeton) and Noa Zilberman (Cambridge).

operations similar to C

e arithemtic operations + - %
* bitwise operations ~ &, |, N, >>, <<

* non-standard bit operations [a:b] bit-slicing
++ bit-string concatenation

* No division and modulo %
 Division by constant is possible for integers

Slides were inspired by (and are based on) related courses of
Nick McKeown (Stanford), Laurent Vanbever (ETH Zurich),
Jennifer Rexford (Princeton) and Noa Zilberman (Cambridge).

constants and variables

bit<8> v =42;

typedef bit<32> MyType;
MyType v2;
v2 =42;

const bit<8> c = 42;
const MyType c2 = 8399;

Slides were inspired by (and are based on) related courses of
Nick McKeown (Stanford), Laurent Vanbever (ETH Zurich),
Jennifer Rexford (Princeton) and Noa Zilberman (Cambridge).

Important

variables cannot be used to maintain state between
different network packets

To maintain states:
tables that can be modified by the control plane

extern objects like registers that can be modified by both control and
data plane

Slides were inspired by (and are based on) related courses of
Nick McKeown (Stanford), Laurent Vanbever (ETH Zurich),
Jennifer Rexford (Princeton) and Noa Zilberman (Cambridge).

statements

return terminates the execution of the action or control
containing It

exit terminates the execution of all the blocks currently
executing

conditions if (v==42){...}else{... }
cannot be used in parsers

switch switch (t.apply().action_run) {

onyl in control b. action_1:1...
\ action_2:1...

Slides were inspired by (and are based on) related courses of
Nick McKeown (Stanford), Laurent Vanbever (ETH Zurich),
Jennifer Rexford (Princeton) and Noa Zilberman (Cambridge).

communication '

A

parsing + match-actions + deparsing

. networks laboratory

N\

Slides were inspired by (and are based on) related courses of
Nick McKeown (Stanford), Laurent Vanbever (ETH Zurich),
Jennifer Rexford (Princeton) and Noa Zilberman (Cambridge).

parser

relies on a state-machine /\

stdmeta {ingress_port: 1, ...}

ethernet {srcAddr: a:b:c:d:e:f, ...}

Packet »
010001000100100010010011101010 ipv4 {srcAddr: x.y.z.w, ...}

tcp {srcPort: 8080, ...}

U

Payload

Slides were inspired by (and are based on) related courses of
Nick McKeown (Stanford), Laurent Vanbever (ETH Zurich),
Jennifer Rexford (Princeton) and Noa Zilberman (Cambridge).

parser MyParser(.) {

state start {

communication '

transition parse_ethernet; A vt sion
start }
state parse_ethernet {
l packet.extract(hdr.ethernet);
transition select(hdr.ethernet.etherType) {
Ox800: parse_ipvé4:
parse_ethernet default: accept;
}
l }
state parse_ipv4d {
packet.extractChdr.ipv4);
parse ipv4 transition selectChdr.ipv4.protocol) {

6: parse_tcp;

17: parse_udp;
¢/// \\\N default: accept;
¥
}

state parse_tcp {

packet.extract(hdr.tcp);
X transition accept:
}

state parse_udp {
packet.extractChdr.udp);
transition accept;

¥

Slides weye inspired by (and are based on) related courses of
Nick MeKeown (Stanford), Laurent Vanbever (ETH Zurich),
Jennifer Rexford (Princeton) and Noa Zilberman (Cambridge).

parse_tcp parse_udp

accept reject

the parser is a state machine

state start {
transition parse_ethernet;

state parse_ethernet {
packet.extract(hdr.ethernet);
transition select(hdr.ethernet.etherType) { Next state depends on etherType
Ox800: parse_ipv4;
default: accept;

Slides were inspired by (and are based on) related courses of
Nick McKeown (Stanford), Laurent Vanbever (ETH Zurich),
Jennifer Rexford (Princeton) and Noa Zilberman (Cambridge).

communication '

A

' networks laboratory

implement your own protocol

Slides were inspired by (and are based on) related courses of
Nick McKeown (Stanford), Laurent Vanbever (ETH Zurich),
Jennifer Rexford (Princeton) and Noa Zilberman (Cambridge).

communication

N
2

Simple tunneling

. networks laboratory

~

Slides were inspired by (and are based on) related courses of
Nick McKeown (Stanford), Laurent Vanbever (ETH Zurich),
Jennifer Rexford (Princeton) and Noa Zilberman (Cambridge).

start

l

parse_ethernet

)

parse_myTlTunnel

/

parse_ipv4

accept reject

header myTunnel_t {
b1t<l6> proto_id;
bit<l6> dst_1id;

}

struct headers {
ethernet_t ethernet;
myTunnel_t myTunnel;
1pvé4_t 1pvé4;

parser MyParser(.) {
state start {.}

state parse_ethernet {
packet.extract(hdr.ethernet);
transition select(hdr.ethernet.etherType) {
0x1212: parse_myTunnel;
0x800: parse_ipv4;
default: accept;
}
}

state parse_myTunnel {
packet.extract(Chdr.myTunnel);
transition select(hdr.myTunnel.proto_id) {
TYPE_IPV4: parse_i1pv4;
default: accept;
3
I

state parse_ipv4 {.}

S}ides were inspired by (and are based on) related courses of
Nick McKeown (Stanford), Laurent Vanbever (ETH Zurich),
Jennifer Rexford (Princeton) and Noa Zilberman (Cambridge).

communication '

.

. networks laboratory

communication '

fixed vs variable length packet fields ¢,/

. networks laboratory

header IPv4_no_options_h {

bit<32> srcAddr;
bit<32> dstAddr;

}
header IPv4_options_h {

varbit<320> options; Variable width field (only one field in a header)
}

parser MyParser(...) {

state parse_ipv4 {
packet.extract(headers.ipv4);
transition select (headers.ipv4.ihl) {
5: dispatch_on_protocol;

default: parse_ipv4_options; ihl determines the length of field options

J note: ihl is the number of words (bit<32>) in the IP packet

}

state parse_ipv4_options {
packet.extract(headers.ipvdoptions, (headers.ipv4.ihl - 5) << 2);
transition dispatch_on_protocol;

} Slides were inspired by (and are based on) related courses of
Nick McKeown (Stanford), Laurent Vanbever (ETH Zurich),
Jennifer Rexford (Princeton) and Noa Zilberman (Cambridge).

parsing a header stack

requires loops — the only case when loop is possible in P4

Site A

2
1

2

4

1 4R
» ¢K
¥

2
*

#*é 3

ides were inspired by (and are based on) related courses of

Nick McKeown (Stanford), Laurent Vanbever (ETH Zurich),
Jennifer Rexford (Princeton) and Noa Zilberman (Cambridge).

1

Site B

start

l

parse_ethernet

)

parse_srcRouting

) \J

parse_ipv4

accept reject

header srcRoute_t {

bit<l> bos:
bi1t<1l5> port;
¥
struct headers {
ethernet_t ethernet;
srcRoute_t[MAX_HOPS] srcRoutes;
ipvd_t 1pvé4;
¥

parser MyParser(...) {
state parse_ethernet {
packet.extract(hdr.ethernet);
transition select(hdr.ethernet.etherType) {
TYPE_SRCROUTING: parse_srcRouting;
default: accept;

}
¥

state parse_srcRouting {
packet.extract(hdr.srcRoutes.next);
transition select(hdr.srcRoutes.last.bos) {
1: parse_ipv4;
default: parse_srcRouting;
}
}

glides were inspired by (and are based on) related courses of
Nick McKeown (Stanford), Laurent Vanbever (ETH Zurich),
Jennifer Rexford (Princeton) and Noa Zilberman (Cambridge).

communication '

.

' networks laboratory

more advanced parser constructions

extern void verify(in bool condition, in error err); ParserModel.verify(bool condition, error err)

a form of error handling { £ (conditi false) |
if (condition == false

ParserModel.parserError = err;

hdr.lookahead<T>(); goto reject;
access bits that have not been parsed yet } i
value_set<T>(size) pvs; state start {

transition select(hdr.lookahead<bit<8>>()) {
0: parse_tcp_option_end;
1: parse_tcp_option_nop;
2: parse_tcp_option_ss;
3: parse_tcp_option_s;
5: parse_tcp_option_sack;

Sub-parsers like subrutines

parser callee(packet_in packet, out IPv4 ipv4) { ...}
parser caller(packet_in packet, out Headers h) {
callee() subparser; // instance of callee

state subroutine { i
subparser.apply(packet, h.ipv4); // invoke sub-parser i
transition accept; // accept if sub-parser ends in accept state

} Slides were inspired by (and are based on) related courses of

Nick McKeown (Stanford), Laurent Vanbever (ETH Zurich),
} Jennifer Rexford (Princeton) and Noa Zilberman (Cambridge).

control blocks

tables match a key and return an action
actions similar to functions in C
control flow similar to C but without loops

Slides were inspired by (and are based on) related courses of
Nick McKeown (Stanford), Laurent Vanbever (ETH Zurich),
Jennifer Rexford (Princeton) and Noa Zilberman (Cambridge).

Control Plane

+

Headers and

Action Metadata

1D Data

Key Match
T Key

Headers Default Headers
& Meta & Meta

Slides were inspired by (and are based on) related courses of
Nick McKeown (Stanford), Laurent Vanbever (ETH Zurich),
Jennifer Rexford (Princeton) and Noa Zilberman (Cambridge).

communication '

tables

Table name

trable { Field(s) to match

key = {
I Match type

}

actions = {

Possible actions

}
size = ; Max. # entries in table
default_action = ; Default action

}

Slides were inspired by (and are based on) related courses of
Nick McKeown (Stanford), Laurent Vanbever (ETH Zurich),
Jennifer Rexford (Princeton) and Noa Zilberman (Cambridge).

tables

Table name

Destination IP address

table ipv4_lpm {
key = {
hdr.ipv4.dstAddr: 1pm;—— Longest prefix match
h
actions = {
ipv4_forward;
drop;
¥

Possible actions

size = 1024; Max. # entries in table

default_action drop(): Default action

}

Slides were inspired by (and are based on) related courses of
Nick McKeown (Stanford), Laurent Vanbever (ETH Zurich),
Jennifer Rexford (Princeton) and Noa Zilberman (Cambridge).

match on one or multiple keys
in different ways

Fields to match

table Fwd {
key = {
hdr.1pv4.dstAddr : ternary;
hdr.ipv4.version : exact;

— Match kind

Slides were inspired by (and are based on) related courses of
Nick McKeown (Stanford), Laurent Vanbever (ETH Zurich),
Jennifer Rexford (Princeton) and Noa Zilberman (Cambridge).

match kinds are specified in P4-core and in
the archs

exact exact comparison
0x01020304
ternary compare with mask - I core.n4
0x01020304 & OxOFOFOFOF P
Tpm longest prefix match
0x01020304/24 B
range check if in range .
0x01020304 — 0x010203FF -~ vlmodel.p4
] other
architecture

Slides were inspired by (and are based on) related courses of
Nick McKeown (Stanford), Laurent Vanbever (ETH Zurich),
Jennifer Rexford (Princeton) and Noa Zilberman (Cambridge).

Table entries are added
through the control plane in runtime

Control Plane
|
table_add 1ipv4_1lpm ipv4_forward 1.2.3.0/24 => 01:01:01:01:01:01 1
table_add 1ipv4_lpm 1ipv4_forward 5.6.7.0/24 => 02:02:02:02:02:02 2

| | !
1.2.3.0/24 | _I

1 01:...,1

5.6.7.0/24 1 02:..,2
—
Slides were inspired by (and are based on) related courses of

Nick McKeown (Stanford), Laurent Vanbever (ETH Zuridh),
Jennifer Rexford (Princeton) and Noa Zilberman (Cambridige).

actions

Block of statements that can modify the packet

Usually take directional parameters:

in read only inside the action
like parameters to a function

out uninitialized, write inside the action
like return values

inout combination of in and out
like “call by reference”

Slides were inspired by (and are based on) related courses of
Nick McKeown (Stanford), Laurent Vanbever (ETH Zurich),
Jennifer Rexford (Princeton) and Noa Zilberman (Cambridge).

communication '

example

action reflect_packet(inout bit<48> src,

inout bit<48> dst, Parameter
in bit<9> inpPort, with direction
out bit<9> outPort
) {

bit<48> tmp = src;

src = dst;

dst = tmp;

outPort = inPort;

t

reflect_packet(hdr.ethernet.srcAddr,
hdr.ethernet.dstAddr,
standard_metadata.ingress_port,
standard_metadata.egress_spec

);

Slides were inspired by (and are based on) related courses of
Nick McKeown (Stanford), Laurent Vanbever (ETH Zurich),
Jennifer Rexford (Princeton) and Noa Zilberman (Cambridge).

reflect_packet

'inDu‘t b'i t{q.s:} src ﬁllllllllllllllllllllﬁ sSrc

inout bit<48> dst R > dst
1n bit<9> TNPOIt =——— inPort
out bit<9> outPort = > outPort

Slides were inspired by (and are based on) related courses of
Nick McKeown (Stanford), Laurent Vanbever (ETH Zurich),
Jennifer Rexford (Princeton) and Noa Zilberman (Cambridge).

actions for table lookups

Parameter
without direction

action set_egress_port(bit<9> port) {
standard_metadata.egress_spec = port;

¥

Slides were inspired by (and are based on) related courses of
Nick McKeown (Stanford), Laurent Vanbever (ETH Zurich),
Jennifer Rexford (Princeton) and Noa Zilberman (Cambridge).

control flow

Interacting with tables from the control flow

Applying a table ipv4_lpm.apply();
Checking if there was a hit if (ipv4_Ipm.apply().hit) {...}
else {...}

Check which action was executed switch (ipv4_[pm.apply().action_run) {
ipv4_forward: { ... }
}

Slides were inspired by (and are based on) related courses of
Nick McKeown (Stanford), Laurent Vanbever (ETH Zurich),
Jennifer Rexford (Princeton) and Noa Zilberman (Cambridge).

|3fwd with multiple tables

ipv4_lpm forward
1.1.1.0 1 1 10
Joeed — > 2220 1 : 2 12 :
3.3.3.0 2 3 30
4.4.4.0 3
r‘wap a prefix to Map a next hop index
a next hop index to an egress port

3.3.3.0/24 &
4.4.40/24 @

1.1.1.0/24

2.2.2.0/24

Slides were inspired by (and are based on) related courses of
Nick McKeown (Stanford), Laurent Vanbever (ETH Zurich),
Jennifer Rexford (Princeton) and Noa Zilberman (Cambridge).

communication '

|3fwd with multiple tables

table forward {
key = { key = {
hdr.ipv4.dstAddr: Tpm; meta.nhop_index: exact;

table ipv4_lpm {

} }
actions = { actions = {
set_nhop_index; _forward;
drop; NoAction;
NoAction; }
}
size = 1024; size = 64;
default_action = NoAction(); default_action = NoAction();
h }

Slides were inspired by (and are based on) related courses of
Nick McKeown (Stanford), Laurent Vanbever (ETH Zurich),
Jennifer Rexford (Princeton) and Noa Zilberman (Cambridge).

control flow — applying tables in a seq.

control MyIngress(...) {
action drop(Q {...}

action set_nhop_index(...}
action _forward(...}

table 1pv4_lpm {...}

table forward {...}

apply { ‘ Check if IPv4 packet

it Chdr.ipv4.isvalid(){
Apply ipv4_1pm table and

check if there was a hit

if (ipv4_lpm.apply().hit) {

forward.applyQ;
} \

}

}

apply forward table

Slides were inspired by (and are based on) related courses of
Nick McKeown (Stanford), Laurent Vanbever (ETH Zurich),
Jennifer Rexford (Princeton) and Noa Zilberman (Cambridge).

mmunication

checksum validation and recomputation W/

. networks laboratory

extern void verify_checksum<T, 0>(in bool condition,
in T data,
inout O checksum,
HashAlgorithm algo

);
— vlimodel.p4

extern void update_checksum<T, 0>(in bool condition,
in T data,
inout O checksum,
HashAlgorithm algo

); B

Slides were inspired by (and are based on) related courses of
Nick McKeown (Stanford), Laurent Vanbever (ETH Zurich),
Jennifer Rexford (Princeton) and Noa Zilberman (Cambridge).

example - checksum recomputation

control MycComputeChecksum(...) {

apply {

update_checksum(

hdr.ipv4.isvalid(),

{ hdr.ipv4
hdr.ipv4
hdr.ipv4
hdr.ipv4
hdr.ipv4
hdr.ipv4
hdr.ipv4
hdr.ipv4

hdr.ipv4

.version,

.ihT1,

.diffserv,
.totalLen,
.identification,
.flags,
.fragoffset,
ttl,

hdr.ipv4.
hdr.ipv4.
.dstAddr },
hdr.ipv4.

protocol,
srcAddr,

hdrchecksum,

HashAlgorithm.csuml6) ;

}
}

pre-condition

fields list

checksum field

algorithm

Slides were inspired by (and are based on) related courses of
Nick McKeown (Stanford), Laurent Vanbever (ETH Zurich),
Jennifer Rexford (Princeton) and Noa Zilberman (Cambridge).

More concepts

cloning packets create a clone of a packet

sending packets to control plane using dedicated Ethernet port,
or target-specific mechanisms
(e.g. digests)

recirculating send packet through pipeline
multiple times

Slides were inspired by (and are based on) related courses of
Nick McKeown (Stanford), Laurent Vanbever (ETH Zurich),
Jennifer Rexford (Princeton) and Noa Zilberman (Cambridge).

communication Al ﬁ

(5
g
' networks laboratory \

A

Lookups & packet classification

Slides were inspired by (and are based on) related courses of
Nick McKeown (Stanford), Laurent Vanbever (ETH Zurich),
Jennifer Rexford (Princeton) and Noa Zilberman (Cambridge).

communication '

A

. networks laboratory

Slides were inspired by (and are based on) related courses of
Nick McKeown (Stanford), Laurent Vanbever (ETH Zurich),
Jennifer Rexford (Princeton) and Noa Zilberman (Cambridge).

778 DF Ry,
’. _-,v i ‘1‘) - by e
&7 825 Eotvos Lorand
5| a2 B 6 | 5 . .
Gaaels) Universit
oy /\}
*1/”\ i~ W‘_\\l‘

FCE6/1 — Lecture 12

Routers
Prefix lookup

Prefix lookups for packet forwarding

control processor
e 0
 Match of IP destination address ;S;ﬂng (;ﬁ’;ﬂ’;ﬂ}
H H ‘L - A e monitor-
with prefixes specified in FIB DL ng
* Longest matching prefix o Ry)
e Typical core router ot backe ‘ o
rocessor acket
* Hundreds of thousands of prefixes pfomrdmg processor
information
Py il base (FIB) | [|]
Millions of lookups per second = .
.« e rocessin schedu-
e Efficient data structures and Csottware. ing
R . ; switchin ;
algorithms essential for lookup o fabric o
pprocgssor pacII)(et
_forwardi.ng processor
booe (210 | =
packet link
processing schedu-
software) ling

Slides were inspired by (and are based on) related courses of
Nick McKeown (Stanford), Laurent Vanbever (ETH Zurich),
Jennifer Rexford (Princeton) and Noa Zilberman (Cambridge).

LPF Thoughts

* Given N prefixes K_i of up to W bits, find the longest match with input K of
W bits.

* 3 prefix notations: slash, mask, and wildcard. 192.255.255.255 /31 or 1*

* N =1M (ISPs) or as small as 5000 (Enterprise). W can be 32 (IPv4), 64
(multicast), 128 (IPv6).

* For IPv4, CIDR makes all prefix lengths from 8 to 28 common, density at 16
and 24

Slides were inspired by (and are based on) related courses of
Nick McKeown (Stanford), Laurent Vanbever (ETH Zurich),
Jennifer Rexford (Princeton) and Noa Zilberman (Cambridge).

Example prefixes

* Prefixes used for example data structures

Prefix name | Binary notation
0/1

0000/4

01/2

0101/4

011/3

11/2

* How to find match for an address (e.g., 01001111)?

MmMmOO W >

Slides were inspired by (and are based on) related courses of
Nick McKeown (Stanford), Laurent Vanbever (ETH Zurich),
Jennifer Rexford (Princeton) and Noa Zilberman (Cambridge).

Binary tree

* One bit per level
A
0 1 1
0 Oﬁ1 \®
0 1 @
0

* How to do lookup?

Slides were inspired by (and are based on) related courses of
Nick McKeown (Stanford), Laurent Vanbever (ETH Zurich),
Jennifer Rexford (Princeton) and Noa Zilberman (Cambridge).

Binary tree

' networks laboratory

* Lookup may require backtracking (or memory):

1% step f E >\
0 1
matching
prefix: C

0 0 1
5" step \(:
4™ step
o

Slides were inspired by (and are based on) related courses of
Nick McKeown (Stanford), Laurent Vanbever (ETH Zurich),
Jennifer Rexford (Princeton) and Noa Zilberman (Cambridge).

Leaf pushing

* Disjoint prefix binary tree

e All matches in leaf nodes Q

Jot

e
g gk
S &6

Slides were inspired by (and are based on) related courses of
Nick McKeown (Stanford), Laurent Vanbever (ETH Zurich),
Jennifer Rexford (Princeton) and Noa Zilberman (Cambridge).

1

0

3

0

Path compression

* Path-compressed binary tree

* Avoids long branches with 1

only one node Q
* Annotation to determine 0 1

which bit to compare 2 @
* Final node needs to be

checked — otherwise 0 1

backtracking 3

0 1

Slides were inspired by (and are based on) related courses of
Nick McKeown (Stanford), Laurent Vanbever (ETH Zurich),
Jennifer Rexford (Princeton) and Noa Zilberman (Cambridge).

Tries

* Check multiple bits per step

MOO 01 10 11
00 01 10 11 00 01 10 11

BA A Ae D E

Slides were inspired by (and are based on) related courses of
Nick McKeown (Stanford), Laurent Vanbever (ETH Zurich),
Jennifer Rexford (Princeton) and Noa Zilberman (Cambridge).

Content Addressable Memory (CAM)

* Uses hardware to complete search in a single cycle

* O(1)

* Fast massively parallel lookup engine

 Large power consumption due to large amount of comparison circuitry
e Binary (0, 1) and Ternary (0, 1, X) CAMs. Latter most popular due to LPF.

Slides were inspired by (and are based on) related courses of
Nick McKeown (Stanford), Laurent Vanbever (ETH Zurich),
Jennifer Rexford (Princeton) and Noa Zilberman (Cambridge).

TCAM Example

Line No.

Address (Binary)
101XX
0110X
011XX
10011

Output Port

B
C
D

Lookup 01101.

communication '

TCAM

search lines matchlines
Ty
| - 1N
mismatch 1 1 11 11 1 L~ (0
—{ | — [} =% — | = X — X |
mntch__
Hrﬂﬂ'ﬁ' 11 [1 [1 T 1 T 1 D_ DI E ﬂddfl.'.'h.‘ﬁ
— ﬂ —4 — I . — |_ & — [' — — _l!l." — E _h.{ll
=
match I 1 - 1 = L
— |:] — — I — — I_ —4 — _:||;r —y E x —
meismcich - - . . s .
11 T ;i 1 1 V
— I — — {:l —a — [] —& — I 4 — I ——= \

matchling
SENSE AMps

search line drivers

searchdatTuzu 1101 CAM RAM
10 1XX 00 [port=A
0110x|—Y o 01 | port=B
0 1 1 XX| searchresult |10 |port=C
(00 11 1T Tpori=D
searchdata=01101 ﬂU[PU[tlﬁﬂ =B

https://www.pagiamtzis.com!cam/cami_ntro/
lides were inspired by (and are based on) related courses of

Nick McKeown (Stanford), Laurent Vanbever (ETH Zurich),
Jennifer Rexford (Princeton) and Noa Zilberman (Cambridge).

Hardware implementation

* Ternary content-addressable memory (TCAM)
e Parallel lookup across all entries
e ‘X" indicates “don’t care”

search word

N

a I
~ 10000 x x x x B
0O 1 01 x x x X D
_ 0O 1 1 x X X X X E
TCAM entries < 0 1 % x x x x x C
1T 1 X X X X X X F
g 0O X X X X X X X A

_
e

Slides were inspired by (and ared)@stﬁ cyr\(pggted courses of
Nick McKeown (Stanford), Laurent Vanbever (ETH Zurich),
Jennifer Rexford (Princeton) and Noa Zilberman (Cambridge).

Hardware implementation

' networks laboratory

* TCAM operation

TCAM SRAM
Prefix Next hop
long *10 1 0 1 ™M Port 1
prefixes "0 0 1 1 ity » Port2
0 0 1 x "» 2 Port 3
Example miss | 3 Memory Example
destination 0 0 x x » < | address Port 4 lookup
> S L
address: > 3 result:
0011 S Port 2
)
Short |
prefixes >

Slides were inspired by (and are based on) related courses of
Nick McKeown (Stanford), Laurent Vanbever (ETH Zurich),
Jennifer Rexford (Princeton) and Noa Zilberman (Cambridge).

Prefix lookup issues

* Performance concerns
* Lookups per second
* Memory requirements
* Power requirements
e Ability to handle updates

* Lots of research in past years
* Many specialized solutions

Slides were inspired by (and are based on) related courses of
Nick McKeown (Stanford), Laurent Vanbever (ETH Zurich),
Jennifer Rexford (Princeton) and Noa Zilberman (Cambridge).

communication '

Router wrap-up

A

' networks laboratory

input ports switch fabric output ports
c 38 3
network |P O © sg scheduling .network
g gpc_g interface

< 8 8
network IP S ® ©
—> : . <t
interface forwarding | |2 @ Q
» £ » =

error

routing handling

control processor

Slides were inspired by (and are based on) related courses of
Nick McKeown (Stanford), Laurent Vanbever (ETH Zurich),
Jennifer Rexford (Princeton) and Noa Zilberman (Cambridge).

communication '

.

. networks laboratory

Slides were inspired by (and are based on) related courses of
Nick McKeown (Stanford), Laurent Vanbever (ETH Zurich),
Jennifer Rexford (Princeton) and Noa Zilberman (Cambridge).

