
Programmable Networks
Lecture 2 – P4 basics & lookups
Sándor Laki, PhD

Communication Networks Laboratory

Dept. of Information Systems, Faculty of Informatics

ELTE Eötvös Loránd University

lakis@elte.hu

http://lakis.web.elte.hu

Slides were inspired by (and are based on) related courses of Nick McKeown (Stanford), Laurent Vanbever (ETH Zurich), Jennifer Rexford
(Princeton) and Noa Zilberman (Cambridge).

mailto:lakis@elte.hu
http://lakis.web.elte.hu/

• P4 environment
• needed for programming in P4

• P4 language
• Language constructs

• Fast lookup
• LPM lookup in software and hardware, packet classification

this week

Slides were inspired by (and are based on) related courses of
Nick McKeown (Stanford), Laurent Vanbever (ETH Zurich),

Jennifer Rexford (Princeton) and Noa Zilberman (Cambridge).

P4 environment

Slides were inspired by (and are based on) related courses of
Nick McKeown (Stanford), Laurent Vanbever (ETH Zurich),

Jennifer Rexford (Princeton) and Noa Zilberman (Cambridge).

• May 2013: Initial idea and the name “P4”
• July 2014: First paper (SIGCOMM CCR)
• Aug 2014: First P4-14 Draft Specification (v0.9.8)
• Sep 2014: P4-14 Specification released (v1.0.0)
• Jan 2015: P4-14 v1.0.1
• Mar 2015: P4-14 v1.0.2
• Nov 2016: P4-14 v1.0.3
• May 2017: P4-14 v1.0.4
• Apr 2016: P4-16 – first commits
• Dec 2016: First P4-16 Draft Specification
• May 2017: P4-16 Specification released

P4 history

Slides were inspired by (and are based on) related courses of
Nick McKeown (Stanford), Laurent Vanbever (ETH Zurich),

Jennifer Rexford (Princeton) and Noa Zilberman (Cambridge).

• P4 Target:
• A model of a specific hardware implementation

• The hardware backend running the compiled P4 code

• P4 Architecture:
• An API to program a target

• P4 programmable components, externs, fixed components

P4-16 introduces the concept of architecure

Slides were inspired by (and are based on) related courses of
Nick McKeown (Stanford), Laurent Vanbever (ETH Zurich),

Jennifer Rexford (Princeton) and Noa Zilberman (Cambridge).

recap: how to program a P4 target

Data Plane Program

P4 program

Architecture description

Compiler

Target

Data Plane Tables Externs

Control plane

User supplied

Vendor supplied

target-specific
binary

Slides were inspired by (and are based on) related courses of
Nick McKeown (Stanford), Laurent Vanbever (ETH Zurich),

Jennifer Rexford (Princeton) and Noa Zilberman (Cambridge).

Example Architectures and Targets

TM

TM

TM

V1Model

Anything

SimpleSumeSwitch

Portable Switch Architecture (PSA)

we’ll rely on the simple „v1model”

Slides were inspired by (and are based on) related courses of
Nick McKeown (Stanford), Laurent Vanbever (ETH Zurich),

Jennifer Rexford (Princeton) and Noa Zilberman (Cambridge).

Each architecture defines the metadata it supports, including both standard
and intrinsic ones

Intrinsic metadata: in addition to the standard metadata fields to offer more
advanced features.

metadata

struct standard_metadata_t {
bit<9> ingress_port;
bit<9> egress_spec;
bit<9> egress_port;
bit<32> clone_spec;
bit<32> instance_type;
bit<1> drop;
bit<16> recirculate_port;
bit<32> packet_length;
bit<32> enq_timestamp;
bit<19> enq_qdepth;
bit<32> deq_timedelta;
bit<19> deq_qdepth;
error parser_error;

bit<48> ingress_global_timestamp;
bit<48> egress_global_timestamp;
bit<32> lf_field_list;
bit<16> mcast_grp;
bit<32> resubmit_flag;
bit<16> egress_rid;
bit<1> checksum_error;
bit<32> recirculate_flag;

}

Slides were inspired by (and are based on) related courses of
Nick McKeown (Stanford), Laurent Vanbever (ETH Zurich),

Jennifer Rexford (Princeton) and Noa Zilberman (Cambridge).

Black-box functions implemented by the target whose interface is known:

• Most targets contain specialized components
which cannot be expressed in P4 (e.g. complex computations)

• but P4-16 should be target-independent
in contrast to P4-14

• Externs are similar to Java interfaces
only the signature is known, not the implementation

externs

Slides were inspired by (and are based on) related courses of
Nick McKeown (Stanford), Laurent Vanbever (ETH Zurich),

Jennifer Rexford (Princeton) and Noa Zilberman (Cambridge).

extern register<T> {
register(bit<32> size);
void read(out T result, in bit<32> index);
void write(in bit<32> index, in T value);

}

extern void random<T>(out T result, in T lo, in T hi);

extern void hash<O, T, D, M>(out O result, in HashAlgorithm algo, in T base, in D data, in M max);

extern void update_checksum<T, O>(in bool condition, in T data, inout O checksum, HashAlgorithm algo);

For more visit: https://github.com/p4lang/p4c/blob/master/p4include/v1model.p4

extern examples – v1model

Slides were inspired by (and are based on) related courses of
Nick McKeown (Stanford), Laurent Vanbever (ETH Zurich),

Jennifer Rexford (Princeton) and Noa Zilberman (Cambridge).

https://github.com/p4lang/p4c/blob/master/p4include/v1model.p4

architectures may have different metadata
and externs

Source: http://isfpga.org/fpga2018/slides/FPGA-2018-P4-tutorial.pdf

Slides were inspired by (and are based on) related courses of
Nick McKeown (Stanford), Laurent Vanbever (ETH Zurich),

Jennifer Rexford (Princeton) and Noa Zilberman (Cambridge).

http://isfpga.org/fpga2018/slides/FPGA-2018-P4-tutorial.pdf

Source: http://isfpga.org/fpga2018/slides/FPGA-2018-P4-tutorial.pdf

Slides were inspired by (and are based on) related courses of
Nick McKeown (Stanford), Laurent Vanbever (ETH Zurich),

Jennifer Rexford (Princeton) and Noa Zilberman (Cambridge).

http://isfpga.org/fpga2018/slides/FPGA-2018-P4-tutorial.pdf

Source: http://isfpga.org/fpga2018/slides/FPGA-2018-P4-tutorial.pdf

Slides were inspired by (and are based on) related courses of
Nick McKeown (Stanford), Laurent Vanbever (ETH Zurich),

Jennifer Rexford (Princeton) and Noa Zilberman (Cambridge).

http://isfpga.org/fpga2018/slides/FPGA-2018-P4-tutorial.pdf

Source: http://isfpga.org/fpga2018/slides/FPGA-2018-P4-tutorial.pdf

Slides were inspired by (and are based on) related courses of
Nick McKeown (Stanford), Laurent Vanbever (ETH Zurich),

Jennifer Rexford (Princeton) and Noa Zilberman (Cambridge).

http://isfpga.org/fpga2018/slides/FPGA-2018-P4-tutorial.pdf

P4 language

Slides were inspired by (and are based on) related courses of
Nick McKeown (Stanford), Laurent Vanbever (ETH Zurich),

Jennifer Rexford (Princeton) and Noa Zilberman (Cambridge).

#include <core.p4>
#include <v1model.p4>
const bit<16> TYPE_IPV4 = 0x800;
typedef bit<32> ip4Addr_t;
header ipv4_t {…}
struct headers {…}

parser MyParser(…) {
state start {…}
state parse_ethernet {…}
state parse_ipv4 {…}

}

control MyIngress(…) {

action ipv4_forward(…) {…}

table ipv4_lpm {…}

apply {
if (…) {…}

}
}

control MyDeparser(…) {…}

V1Switch(
MyParser(),
MyVerifyChecksum(),
MyIngress(),
MyEgress(),
MyComputeChecksum(),
MyDeparser()

) main;

Include libraries

Declarations

Parse packet headers

Control flow to modify/forward
packets

Assemble (modified) packet

main()

Slides were inspired by (and are based on) related courses of
Nick McKeown (Stanford), Laurent Vanbever (ETH Zurich),

Jennifer Rexford (Princeton) and Noa Zilberman (Cambridge).

bool Boolean value

bit<W> Bit-string of width W

int<W> Signed integer of width W

varbit<W> Bit-string of dynamic length ≤W

match_kind describes ways to match table keys

error used to signal errors

void no values, used in few restricted circumstances

float not supported

string not supported

P4-16 is a statically-typed language with base types

Slides were inspired by (and are based on) related courses of
Nick McKeown (Stanford), Laurent Vanbever (ETH Zurich),

Jennifer Rexford (Princeton) and Noa Zilberman (Cambridge).

• Header
• Header stack
• Header union

• Struct

• Tuple

• Enum
• etc.

… and operators to derive composed ones

Slides were inspired by (and are based on) related courses of
Nick McKeown (Stanford), Laurent Vanbever (ETH Zurich),

Jennifer Rexford (Princeton) and Noa Zilberman (Cambridge).

header Ethernet_h {

bit<48> dstAddr;

bit<48> srcAddr;

bit<16> etherType;

}

Ethernet_h ethernetHeader;

Similar to struct in C containing the different fields plus a hidden "validity" field

header

Declaration

Parsing a packet using extract() fills in the fields
of the header from a network packet.

A successful extract() sets to true
the validity bit of the extracted header

Operations on header instances in the control
blocks: isValid(), setValid() and setInvalid()

Slides were inspired by (and are based on) related courses of
Nick McKeown (Stanford), Laurent Vanbever (ETH Zurich),

Jennifer Rexford (Princeton) and Noa Zilberman (Cambridge).

header

header Ethernet_h {

bit<48> dstAddr;

bit<48> srcAddr;

bit<16> etherType;

}

header Mpls_h {

bit<20> label;

bit<3> tc;

bit<1> bos;

bit<8> ttl;

}

Mpls_h[10] mpls;

header_union IP_h {

IPv4_h v4;

IPv6_h v6;

}

Array of up to 10
MPLS headers

Either IPv4 or IPv6
header

(only one alternative)

Slides were inspired by (and are based on) related courses of
Nick McKeown (Stanford), Laurent Vanbever (ETH Zurich),

Jennifer Rexford (Princeton) and Noa Zilberman (Cambridge).

struct standard_metadata_t {

bit<9> ingress_port;

bit<9> egress_spec;

bit<9> egress_port;

…

}

struct & tuple

tuple<bit<32>, bool> x;

x = { 10, false };

Unordered collection of
unnamed members

Unordered collection
of named members

Slides were inspired by (and are based on) related courses of
Nick McKeown (Stanford), Laurent Vanbever (ETH Zurich),

Jennifer Rexford (Princeton) and Noa Zilberman (Cambridge).

enum Priority {High, Low};

typedef bit<48> macAddr_t;

extern …

parser …

control …

package …

others

Slides were inspired by (and are based on) related courses of
Nick McKeown (Stanford), Laurent Vanbever (ETH Zurich),

Jennifer Rexford (Princeton) and Noa Zilberman (Cambridge).

• arithemtic operations +, -, *

• bitwise operations ~, &, |, ^, >>, <<

• non-standard bit operations [a:b] bit-slicing
++ bit-string concatenation

• No division and modulo /, %
• Division by constant is possible for integers

operations similar to C

Slides were inspired by (and are based on) related courses of
Nick McKeown (Stanford), Laurent Vanbever (ETH Zurich),

Jennifer Rexford (Princeton) and Noa Zilberman (Cambridge).

bit<8> v = 42;

typedef bit<32> MyType;

MyType v2;

v2 = 42;

const bit<8> c = 42;

const MyType c2 = 8899;

constants and variables

Slides were inspired by (and are based on) related courses of
Nick McKeown (Stanford), Laurent Vanbever (ETH Zurich),

Jennifer Rexford (Princeton) and Noa Zilberman (Cambridge).

variables cannot be used to maintain state between
different network packets

To maintain states:

tables that can be modified by the control plane

extern objects like registers that can be modified by both control and
data plane

important

Slides were inspired by (and are based on) related courses of
Nick McKeown (Stanford), Laurent Vanbever (ETH Zurich),

Jennifer Rexford (Princeton) and Noa Zilberman (Cambridge).

return terminates the execution of the action or control
containing it

exit terminates the execution of all the blocks currently
executing

conditions if (v==42) { … } else { … }
cannot be used in parsers

switch switch (t.apply().action_run) {
onyl in control b. action_1 : { … }

action_2 : { … }
}

statements

Slides were inspired by (and are based on) related courses of
Nick McKeown (Stanford), Laurent Vanbever (ETH Zurich),

Jennifer Rexford (Princeton) and Noa Zilberman (Cambridge).

parsing + match-actions + deparsing

Slides were inspired by (and are based on) related courses of
Nick McKeown (Stanford), Laurent Vanbever (ETH Zurich),

Jennifer Rexford (Princeton) and Noa Zilberman (Cambridge).

relies on a state-machine

parser

Packet
010001000100100010010011101010

stdmeta {ingress_port: 1, …}

ethernet {srcAddr: a:b:c:d:e:f, …}

ipv4 {srcAddr: x.y.z.w, …}

tcp {srcPort: 8080, …}

Payload

Slides were inspired by (and are based on) related courses of
Nick McKeown (Stanford), Laurent Vanbever (ETH Zurich),

Jennifer Rexford (Princeton) and Noa Zilberman (Cambridge).

Slides were inspired by (and are based on) related courses of
Nick McKeown (Stanford), Laurent Vanbever (ETH Zurich),

Jennifer Rexford (Princeton) and Noa Zilberman (Cambridge).

state start {

transition parse_ethernet;

}

state parse_ethernet {

packet.extract(hdr.ethernet);

transition select(hdr.ethernet.etherType) {

0x800: parse_ipv4;

default: accept;

}

}

the parser is a state machine

Next state depends on etherType

Slides were inspired by (and are based on) related courses of
Nick McKeown (Stanford), Laurent Vanbever (ETH Zurich),

Jennifer Rexford (Princeton) and Noa Zilberman (Cambridge).

implement your own protocol

Slides were inspired by (and are based on) related courses of
Nick McKeown (Stanford), Laurent Vanbever (ETH Zurich),

Jennifer Rexford (Princeton) and Noa Zilberman (Cambridge).

Simple tunneling

Site A

Site B Site D

Site C

Slides were inspired by (and are based on) related courses of
Nick McKeown (Stanford), Laurent Vanbever (ETH Zurich),

Jennifer Rexford (Princeton) and Noa Zilberman (Cambridge).

Slides were inspired by (and are based on) related courses of
Nick McKeown (Stanford), Laurent Vanbever (ETH Zurich),

Jennifer Rexford (Princeton) and Noa Zilberman (Cambridge).

header IPv4_no_options_h {
...
bit<32> srcAddr;
bit<32> dstAddr;

}
header IPv4_options_h {

varbit<320> options;
}
...
parser MyParser(…) {

...
state parse_ipv4 {

packet.extract(headers.ipv4);
transition select (headers.ipv4.ihl) {

5: dispatch_on_protocol;
default: parse_ipv4_options;

}
}
state parse_ipv4_options {

packet.extract(headers.ipv4options, (headers.ipv4.ihl - 5) << 2);
transition dispatch_on_protocol;

}
}

fixed vs variable length packet fields

Variable width field (only one field in a header)

ihl determines the length of field options
note: ihl is the number of words (bit<32>) in the IP packet

Slides were inspired by (and are based on) related courses of
Nick McKeown (Stanford), Laurent Vanbever (ETH Zurich),

Jennifer Rexford (Princeton) and Noa Zilberman (Cambridge).

requires loops – the only case when loop is possible in P4

parsing a header stack

Site A

Site B Site D

Site C

1

2

1

1

1

1
2

2

2

2

3

3

Packet

2
1
2

Packet

Slides were inspired by (and are based on) related courses of
Nick McKeown (Stanford), Laurent Vanbever (ETH Zurich),

Jennifer Rexford (Princeton) and Noa Zilberman (Cambridge).

Slides were inspired by (and are based on) related courses of
Nick McKeown (Stanford), Laurent Vanbever (ETH Zurich),

Jennifer Rexford (Princeton) and Noa Zilberman (Cambridge).

extern void verify(in bool condition, in error err);

a form of error handling

hdr.lookahead<T>();

access bits that have not been parsed yet

value_set<T>(size) pvs;

Sub-parsers like subrutines

more advanced parser constructions
ParserModel.verify(bool condition, error err)
{

if (condition == false) {
ParserModel.parserError = err;
goto reject;

}
}

state start {
transition select(hdr.lookahead<bit<8>>()) {

0: parse_tcp_option_end;
1: parse_tcp_option_nop;
2: parse_tcp_option_ss;
3: parse_tcp_option_s;
5: parse_tcp_option_sack;

}
}

parser callee(packet_in packet, out IPv4 ipv4) { ...}
parser caller(packet_in packet, out Headers h) {

callee() subparser; // instance of callee
state subroutine {

subparser.apply(packet, h.ipv4); // invoke sub-parser
transition accept; // accept if sub-parser ends in accept state

}
}

Slides were inspired by (and are based on) related courses of
Nick McKeown (Stanford), Laurent Vanbever (ETH Zurich),

Jennifer Rexford (Princeton) and Noa Zilberman (Cambridge).

tables match a key and return an action

actions similar to functions in C

control flow similar to C but without loops

control blocks

Slides were inspired by (and are based on) related courses of
Nick McKeown (Stanford), Laurent Vanbever (ETH Zurich),

Jennifer Rexford (Princeton) and Noa Zilberman (Cambridge).

Slides were inspired by (and are based on) related courses of
Nick McKeown (Stanford), Laurent Vanbever (ETH Zurich),

Jennifer Rexford (Princeton) and Noa Zilberman (Cambridge).

tables

Slides were inspired by (and are based on) related courses of
Nick McKeown (Stanford), Laurent Vanbever (ETH Zurich),

Jennifer Rexford (Princeton) and Noa Zilberman (Cambridge).

tables

Slides were inspired by (and are based on) related courses of
Nick McKeown (Stanford), Laurent Vanbever (ETH Zurich),

Jennifer Rexford (Princeton) and Noa Zilberman (Cambridge).

match on one or multiple keys
in different ways

Slides were inspired by (and are based on) related courses of
Nick McKeown (Stanford), Laurent Vanbever (ETH Zurich),

Jennifer Rexford (Princeton) and Noa Zilberman (Cambridge).

match kinds are specified in P4-core and in
the archs

Slides were inspired by (and are based on) related courses of
Nick McKeown (Stanford), Laurent Vanbever (ETH Zurich),

Jennifer Rexford (Princeton) and Noa Zilberman (Cambridge).

Table entries are added
through the control plane in runtime

Slides were inspired by (and are based on) related courses of
Nick McKeown (Stanford), Laurent Vanbever (ETH Zurich),

Jennifer Rexford (Princeton) and Noa Zilberman (Cambridge).

Block of statements that can modify the packet

Usually take directional parameters:

in read only inside the action
like parameters to a function

out uninitialized, write inside the action
like return values

inout combination of in and out
like “call by reference”

actions

Slides were inspired by (and are based on) related courses of
Nick McKeown (Stanford), Laurent Vanbever (ETH Zurich),

Jennifer Rexford (Princeton) and Noa Zilberman (Cambridge).

example

Slides were inspired by (and are based on) related courses of
Nick McKeown (Stanford), Laurent Vanbever (ETH Zurich),

Jennifer Rexford (Princeton) and Noa Zilberman (Cambridge).

Slides were inspired by (and are based on) related courses of
Nick McKeown (Stanford), Laurent Vanbever (ETH Zurich),

Jennifer Rexford (Princeton) and Noa Zilberman (Cambridge).

actions for table lookups

Slides were inspired by (and are based on) related courses of
Nick McKeown (Stanford), Laurent Vanbever (ETH Zurich),

Jennifer Rexford (Princeton) and Noa Zilberman (Cambridge).

Interacting with tables from the control flow

Applying a table ipv4_lpm.apply();

Checking if there was a hit if (ipv4_lpm.apply().hit) {...}
else {...}

Check which action was executed switch (ipv4_lpm.apply().action_run) {
ipv4_forward: { ... }

}

control flow

Slides were inspired by (and are based on) related courses of
Nick McKeown (Stanford), Laurent Vanbever (ETH Zurich),

Jennifer Rexford (Princeton) and Noa Zilberman (Cambridge).

l3fwd with multiple tables

Slides were inspired by (and are based on) related courses of
Nick McKeown (Stanford), Laurent Vanbever (ETH Zurich),

Jennifer Rexford (Princeton) and Noa Zilberman (Cambridge).

l3fwd with multiple tables

Slides were inspired by (and are based on) related courses of
Nick McKeown (Stanford), Laurent Vanbever (ETH Zurich),

Jennifer Rexford (Princeton) and Noa Zilberman (Cambridge).

control flow – applying tables in a seq.

Slides were inspired by (and are based on) related courses of
Nick McKeown (Stanford), Laurent Vanbever (ETH Zurich),

Jennifer Rexford (Princeton) and Noa Zilberman (Cambridge).

checksum validation and recomputation

Slides were inspired by (and are based on) related courses of
Nick McKeown (Stanford), Laurent Vanbever (ETH Zurich),

Jennifer Rexford (Princeton) and Noa Zilberman (Cambridge).

example - checksum recomputation

Slides were inspired by (and are based on) related courses of
Nick McKeown (Stanford), Laurent Vanbever (ETH Zurich),

Jennifer Rexford (Princeton) and Noa Zilberman (Cambridge).

cloning packets create a clone of a packet

sending packets to control plane using dedicated Ethernet port,
or target-specific mechanisms
(e.g. digests)

recirculating send packet through pipeline
multiple times

More concepts

Slides were inspired by (and are based on) related courses of
Nick McKeown (Stanford), Laurent Vanbever (ETH Zurich),

Jennifer Rexford (Princeton) and Noa Zilberman (Cambridge).

Lookups & packet classification

Slides were inspired by (and are based on) related courses of
Nick McKeown (Stanford), Laurent Vanbever (ETH Zurich),

Jennifer Rexford (Princeton) and Noa Zilberman (Cambridge).

Slides were inspired by (and are based on) related courses of
Nick McKeown (Stanford), Laurent Vanbever (ETH Zurich),

Jennifer Rexford (Princeton) and Noa Zilberman (Cambridge).

ECE 671 – Lecture 12

Routers

Prefix lookup

Prefix lookups for packet forwarding

• Match of IP destination address
with prefixes specified in FIB
• Longest matching prefix

• Typical core router
• Hundreds of thousands of prefixes

• Millions of lookups per second

• Efficient data structures and
algorithms essential for lookup

control processor

routing

protocol

A

routing

protocol

B monitor-

ing

...

...

input packet

processor

routing information base

(RIB)

forwarding

information

base (FIB)

packet

processing

software

input packet

processor

forwarding

information

base (FIB)

packet

processing

software

...

output

packet

processor

output

packet

processor

...switching

fabric

link

schedu-

ling

link

schedu-

ling

Slides were inspired by (and are based on) related courses of
Nick McKeown (Stanford), Laurent Vanbever (ETH Zurich),

Jennifer Rexford (Princeton) and Noa Zilberman (Cambridge).

LPF Thoughts

• Given N prefixes K_i of up to W bits, find the longest match with input K of
W bits.

• 3 prefix notations: slash, mask, and wildcard. 192.255.255.255 /31 or 1*

• N =1M (ISPs) or as small as 5000 (Enterprise). W can be 32 (IPv4), 64
(multicast), 128 (IPv6).

• For IPv4, CIDR makes all prefix lengths from 8 to 28 common, density at 16
and 24

Slides were inspired by (and are based on) related courses of
Nick McKeown (Stanford), Laurent Vanbever (ETH Zurich),

Jennifer Rexford (Princeton) and Noa Zilberman (Cambridge).

Example prefixes

• Prefixes used for example data structures

• How to find match for an address (e.g., 01001111)?

Prefix name Binary notation

A 0/1

B 0000/4

C 01/2

D 0101/4

E 011/3

F 11/2

Slides were inspired by (and are based on) related courses of
Nick McKeown (Stanford), Laurent Vanbever (ETH Zurich),

Jennifer Rexford (Princeton) and Noa Zilberman (Cambridge).

Binary tree

• One bit per level

• How to do lookup?

0

0

0

0

1

11

1

1

0

A

B

FC

E

D

Slides were inspired by (and are based on) related courses of
Nick McKeown (Stanford), Laurent Vanbever (ETH Zurich),

Jennifer Rexford (Princeton) and Noa Zilberman (Cambridge).

Binary tree

• Lookup may require backtracking (or memory):

0

0

0

0

1

11

1

1

0

A

B

FC

E

D

1
st
 step

2
nd

 step

3
rd

 step

4
th
 step

5
th
 step

matching

prefix: C

Slides were inspired by (and are based on) related courses of
Nick McKeown (Stanford), Laurent Vanbever (ETH Zurich),

Jennifer Rexford (Princeton) and Noa Zilberman (Cambridge).

Leaf pushing

• Disjoint prefix binary tree
• All matches in leaf nodes

0

0

0

0

1

11

1

1

0

B

F

E

D

1

A

1

A

0

C

0

C

Slides were inspired by (and are based on) related courses of
Nick McKeown (Stanford), Laurent Vanbever (ETH Zurich),

Jennifer Rexford (Princeton) and Noa Zilberman (Cambridge).

Path compression

• Path-compressed binary tree
• Avoids long branches with

only one node

• Annotation to determine
which bit to compare

• Final node needs to be
checked – otherwise
backtracking

0

0

1

1

10

A

B

F

C

ED

1

2

3

Slides were inspired by (and are based on) related courses of
Nick McKeown (Stanford), Laurent Vanbever (ETH Zurich),

Jennifer Rexford (Princeton) and Noa Zilberman (Cambridge).

Tries

• Check multiple bits per step

00 10 1101

100100

F

EDC

11

E

100100

AAB

11

A

Slides were inspired by (and are based on) related courses of
Nick McKeown (Stanford), Laurent Vanbever (ETH Zurich),

Jennifer Rexford (Princeton) and Noa Zilberman (Cambridge).

Content Addressable Memory (CAM)

• Uses hardware to complete search in a single cycle

• O(1)

• Fast massively parallel lookup engine

• Large power consumption due to large amount of comparison circuitry

• Binary (0, 1) and Ternary (0, 1, X) CAMs. Latter most popular due to LPF.

Slides were inspired by (and are based on) related courses of
Nick McKeown (Stanford), Laurent Vanbever (ETH Zurich),

Jennifer Rexford (Princeton) and Noa Zilberman (Cambridge).

TCAM Example

Line No. Address (Binary) Output Port

1 101XX A

2 0110X B

3 011XX C

4 10011 D

• Lookup 01101.

Slides were inspired by (and are based on) related courses of
Nick McKeown (Stanford), Laurent Vanbever (ETH Zurich),

Jennifer Rexford (Princeton) and Noa Zilberman (Cambridge).

TCAM

https://www.pagiamtzis.com/cam/camintro/
Slides were inspired by (and are based on) related courses of

Nick McKeown (Stanford), Laurent Vanbever (ETH Zurich),
Jennifer Rexford (Princeton) and Noa Zilberman (Cambridge).

Hardware implementation

• Ternary content-addressable memory (TCAM)
• Parallel lookup across all entries

• ‘x’ indicates “don’t care”

0 x x x x x x x A

0 0 0 0 x x x x B

0 1 x x x x x x C

0 1 0 1 x x x x D

1 1 x x x x x x F

0 1 1 x x x x x E

search word

data word

TCAM entries

Slides were inspired by (and are based on) related courses of
Nick McKeown (Stanford), Laurent Vanbever (ETH Zurich),

Jennifer Rexford (Princeton) and Noa Zilberman (Cambridge).

Hardware implementation

• TCAM operation

0 1 0 1

0 0 x x

0 0 1 1

0 0 1 x

miss

hit

hit

miss

P
rio

rity
 e

n
c
o

d
e

r

Long

prefixes

Short

prefixes

Port 1

Port 3

Port 2

Port 4

TCAM SRAM

Prefix Next hop

Memory

address
Example

destination

address:

0011

Example

lookup

result:

Port 2

Slides were inspired by (and are based on) related courses of
Nick McKeown (Stanford), Laurent Vanbever (ETH Zurich),

Jennifer Rexford (Princeton) and Noa Zilberman (Cambridge).

Prefix lookup issues

• Performance concerns
• Lookups per second

• Memory requirements

• Power requirements

• Ability to handle updates

• Lots of research in past years
• Many specialized solutions

Slides were inspired by (and are based on) related courses of
Nick McKeown (Stanford), Laurent Vanbever (ETH Zurich),

Jennifer Rexford (Princeton) and Noa Zilberman (Cambridge).

Router wrap-up

input ports switch fabric output ports

network

interface

IP

forwarding

s
w

it
c
h

in
te

rf
a

c
e

network

interface

IP

forwarding

s
w

it
c
h

in
te

rf
a

c
e

s
w

it
c
h

in
te

rf
a

c
e

s
w

it
c
h

in
te

rf
a

c
e

scheduling

scheduling

network

interface

network

interface

..
. ...

control processor

routing
error

handling

Slides were inspired by (and are based on) related courses of
Nick McKeown (Stanford), Laurent Vanbever (ETH Zurich),

Jennifer Rexford (Princeton) and Noa Zilberman (Cambridge).

Slides were inspired by (and are based on) related courses of
Nick McKeown (Stanford), Laurent Vanbever (ETH Zurich),

Jennifer Rexford (Princeton) and Noa Zilberman (Cambridge).

