
Programmable Networks
Lecture 1 - Introduction
Sándor Laki, PhD

Communication Networks Laboratory

Dept. of Information Systems, Faculty of Informatics

ELTE Eötvös Loránd University

lakis@elte.hu

http://lakis.web.elte.hu

Slides were inspired by (and are based on) related courses of Nick McKeown (Stanford), Laurent Vanbever (ETH Zurich), Jennifer Rexford
(Princeton) and Noa Zilberman (Cambridge).

mailto:lakis@elte.hu
http://lakis.web.elte.hu/

• Networking is on the verge of a paradigm shift towards deep
programmability

• Huge industrial interest

Programmable Networks

Network management crisis

Networks are large distributed systems

Running distributed algorithms

src: Bob

dst: Google

Routers forward IP packets hop-by-hop
towards their destination

src: Bob

dst: Google

Let’s check what is going on
between two neighboring routers

Two neighboring routers

Data Plane Data Plane

IF-2

IF-1

IF-4

IF-3

IF-2

IF-1

IF-4

IF-3

LOSA HOUS

Upon packet reception, routers locally lookup
their forwarding table to know where to send it
next

Data Plane Data Plane

IF-2

IF-1

IF-4

IF-3

IF-2

IF-1

IF-4

IF-3

LOSA HOUS

src: Bob

dst: Google

Packet

destination output
Bob IF-1
Google IF-4

Forwarding table

According to the fwd table,
the packet should be directed to IF-4

Data Plane Data Plane

IF-2

IF-1

IF-4

IF-3

IF-2

IF-1

IF-4

IF-3

LOSA HOUS

src: Bob

dst: Google

Packet

destination output
Bob IF-1
Google IF-4

Forwarding table

According to the fwd table,
the packet should be directed to IF-4

Data Plane Data Plane

IF-2 IF-4

IF-3

IF-2

IF-1

IF-4

IF-3

LOSA HOUS

src: Bob

Packet

IF-1

dst: Google

destination output
Bob IF-2
Google IF-3

Forwarding table

Forwarding is repeated at each router
until the destination is reached

Data Plane Data Plane

IF-2 IF-4

IF-3

IF-2

IF-1

IF-4

IF-3

LOSA HOUS

src: Bob

Packet

IF-1

dst: Google

destination output
Bob IF-2
Google IF-3

Forwarding table

Forwarding is repeated at each router
until the destination is reached

Data Plane Data Plane

IF-2 IF-4

IF-3

IF-2

IF-1

IF-4

IF-3

LOSA HOUS

src: Bob

Packet

IF-1

dst: Google

src: Bob

Packet

dst: Google

Forwarding is repeated at each router
until the destination is reached

Data Plane Data Plane

IF-2

IF-3 IF-1

IF-4

IF-3

LOSA HOUS

IF-1

IF-4 IF-2

• These distributed algorithms produce the forwarding state
which drives IP traffic to its destination

• Forwarding behavior is implemented by configuring each forwarding
device individually

• Moving to a new network behavior requires the reconfiguration of one or
multiple devices

Network management crisis

Configuring each element is often done manually,
using arcane low-level, vendor-specific “languages”

Source: slides of Laurent Vanbever (ETHZ)

A single mistyped line is enough
to bring down the entire network

Source: slides of Laurent Vanbever (ETHZ)

Anything else than 700
creates blackholes

• It's not only about the problem of configuring the network

• but the high level of complexity in networks

Network management crisis

Source: Mark Handley. Re-thinking the control architecture of the internet. Keynote talk. REARCH. December 2009.

High Complexity
+

Low-level Management
=

Problems

* https://dyn.com/blog/widespread-impact-caused-by-level-3-bgp-route-leak/

• A little outage
– for more than 90 mins

• Affected millions of users from the US and world-wide

• Cause: BGP route leaking
• A misconfigured router directed Internet traffic

from its intended path to somewhere else.

We have a little problem
here…

August 2017

* https://www.theregister.co.uk/2017/08/27/google_routing_blunder_sent_japans_internet_dark/

• People also often mistakenly destroy
their own infrastructure

Human factor

• People also often mistakenly destroy
their own infrastructure

Human factor

„Human factors are responsible
for 50% to 80% of network outages.”

Jupiter Networks, What’s Behind Network Downtime?, 2008

Data networks work better
during week-ends…☺

“Cost per network outage can be as high as 750 000$”

Source: Smart Management for Robust Carrier Network Health and Reduced TCO!, NANOG54, 2012

Network management crisis

• Networking devices are completely closed
• Closed software

• Closed hardware

Root of the problem

Course goals & organization

• Learn the principles of network programmability
• Both data and control planes

• Learn P4 language

• Get insights into hot research problems

Goals

• Two 7-8 weeks blocks
• Lectures/Excercises

• Principles of SDN and data plane programmability
• Learn how to program in P4

• Group project
• In teams of 2-3 person
• 15 min presentation + report at the end
• Code available on GitHub

• Final grade
• 50% EXAM
• 50% Group project (code, report, presentation)

Logistics

Data, Control and Management planes

Timescales

31

Data Control Management

Time-
scale

Packet
(nsec)

Event (10
msec to sec)

Human (min
to hours)

Tasks Forwarding,
buffering,
filtering,
scheduling

Routing,
circuit
set-up

Analysis,
configuration

Location Line-card
hardware

Router
software

Humans or
scripts

Data and Control Planes

32

Switching

Fabric

Processor

Line card

Line card

Line card

Line card

Line card

Line card

data plane

control plane

Data Plane

• Streaming algorithms on packets
• Matching on some bits

• Perform some actions

• Wide range of functionality
• Forwarding

• Access control

• Mapping header fields

• Traffic monitoring

• Buffering and marking

• Shaping and scheduling

• Deep packet inspection

33

Switching

Fabric

Processor

Switch: Match on Destination MAC

• MAC addresses are location independent
• Assigned by the vendor of the interface card

• Cannot be aggregated across hosts in LAN

34

mac1

mac2

mac3

mac5

mac4

host host host...

mac1 mac2 mac3

switch

host

host

mac4

mac5

Router: Match on IP Prefix

• IP addresses grouped into common subnets
• Allocated by ICANN, regional registries, ISPs, and

within individual organizations

• Variable-length prefix identified by a mask length

35

host host host

LAN 1

... host host host

LAN 2

...

router router router
WAN WAN

1.2.3.4 1.2.3.7 1.2.3.156 5.6.7.8 5.6.7.9 5.6.7.212

1.2.3.0/24

5.6.7.0/24

forwarding table

Prefixes may be nested.

Routers identify the

longest matching prefix.

Forwarding vs. Routing

• Forwarding: data plane
• Directing a data packet to an outgoing link

• Individual router using a forwarding table

•Routing: control plane
• Computing paths the packets will follow

• Routers talking amongst themselves

• Individual router creating a forwarding
table

36

Example: Shortest-Path Routing

• Compute: path costs to all nodes
• From a source u to all other nodes

• Cost of the path through each link

• Next hop along least-cost path to s

37

3

2

2

1

1

4

1

4

5

3

u

s
6

v (u,v)

w (u,w)

x (u,w)

y (u,v)

z (u,v)

link

s (u,w)

t (u,w)

v

w

y

x

t

z

Distributed Control Plane

• Link-state routing: OSPF, IS-IS
• Flood the entire topology to all nodes

• Each node computes shortest paths

• Dijkstra’s algorithm

3838

v (u,v)

w (u,w)

x (u,w)

y (u,v)

z (u,v)

link

s (u,w)

t (u,w)

3

2

2

1

1

4

1

4

5

3

u

v

w

x

y

z

s

t

Distributed Control Plane

• Distance-vector routing: RIP, EIGRP
• Each node computes path cost

• … based on each neighbors’ path cost

• Bellman-Ford algorithm

39

3

2

2

1

1

4

1

4

5

3

u

v

w

x

y

z

s

t

du(z) = min{c(u,v) + dv(z),
c(u,w) + dw(z)}

Traffic Engineering Problem

• Management plane: setting the weights
• Inversely proportional to link capacity?

• Proportional to propagation delay?

• Network-wide optimization based on traffic?

40

3
2

2

1

1

3

1

4

5

3

3

Traffic Engineering: Optimization

• Inputs
• Network topology

• Link capacities

• Traffic matrix

• Output
• Link weights

• Objective
• Minimize max-utilized link

• Or, minimize a sum of link congestion

41

3
2

2

1

1

3

1

4

5

3

Transient Routing Disruptions

• Topology changes
• Link weight change

• Node/link failure or recovery

• Routing convergence
• Nodes temporarily disagree how to route

• Leading to transient loops and blackholes

42

1

4

5

3

1

4

10

3

1

4

10

3

Management Plane Challenges

• Indirect control
• Changing weights instead of paths

• Complex optimization problem

• Uncoordinated control
• Cannot control which router updates first

• Interacting protocols and mechanisms
• Routing and forwarding

• Naming and addressing

• Access control

• Quality of service

• …

43

SDN – Software Defined Networking

The Internet: A Remarkable Story

• Tremendous success
• From research experiment

to global infrastructure

• Brilliance of under-specifying
• Network: best-effort packet delivery

• Hosts: arbitrary applications

• Enables innovation in applications
• Web, P2P, VoIP, social networks, virtual worlds

• But, change is easy only at the edge…

Inside the ‘Net: A Different Story…

• Closed equipment
• Software bundled with hardware

• Vendor-specific interfaces

• Over specified
• Slow protocol standardization

• Few people can innovate
• Equipment vendors write the code

• Long delays to introduce new features

Impacts performance, security, reliability, cost…

Networks are Hard to Manage

• Operating a network is expensive
• More than half the cost of a network

• Yet, operator error causes most outages

• Buggy software in the equipment
• Routers with 20+ million lines of code

• Cascading failures, vulnerabilities, etc.

• The network is “in the way”
• Especially a problem in data centers

• … and home networks

Rethinking the “Division of Labor”

48

Traditional Computer Networks

Data plane:

Packet

streaming

Forward, filter, buffer, mark,

rate-limit, and measure packets

Traditional Computer Networks

Track topology changes, compute

routes, install forwarding rules

Control plane:

Distributed algorithms

Traditional Computer Networks

Collect measurements and configure

the equipment

Management plane:

Human time scale

Death to the Control Plane!

• Simpler management
• No need to “invert” control-plane operations

• Faster pace of innovation
• Less dependence on vendors and standards

• Easier interoperability
• Compatibility only in “wire” protocols

• Simpler, cheaper equipment
• Minimal software

Software Defined Networking (SDN)

API to the data plane

(e.g., OpenFlow)

Logically-centralized control

Switches

Smart,

slow

Dumb,

fast

OpenFlow Networks

54

Data-Plane: Simple Packet Handling

• Simple packet-handling rules
• Pattern: match packet header bits

• Actions: drop, forward, modify, send to controller

• Priority: disambiguate overlapping patterns

• Counters: #bytes and #packets

1. src=1.2.*.*, dest=3.4.5.* drop
2. src = *.*.*.*, dest=3.4.*.* forward(2)
3. src=10.1.2.3, dest=*.*.*.* send to controller

1. src=1.2.*.*, dest=3.4.5.* drop
2. src = *.*.*.*, dest=3.4.*.* forward(2)
3. src=10.1.2.3, dest=*.*.*.* send to controller

Unifies Different Kinds of Boxes

• Router
• Match: longest

destination IP prefix

• Action: forward out a
link

• Switch
• Match: destination MAC

address

• Action: forward or flood

• Firewall
• Match: IP addresses and

TCP/UDP port numbers

• Action: permit or deny

• NAT
• Match: IP address and

port

• Action: rewrite address
and port

56

Controller: Programmability

57

Network OSNetwork OS

Controller Application

Events from switches

Topology changes,

Traffic statistics,

Arriving packets

Commands to switches

(Un)install rules,

Query statistics,

Send packets

Example OpenFlow Applications

• Dynamic access control

• Seamless mobility/migration

• Server load balancing

• Network virtualization

• Using multiple wireless access points

• Energy-efficient networking

• Adaptive traffic monitoring

• Denial-of-Service attack detection

See http://www.openflow.org/videos/

E.g.: Dynamic Access Control

• Inspect first packet of a connection

• Consult the access control policy

• Install rules to block or route traffic

E.g.: Seamless Mobility/Migration

• See host send traffic at new location

• Modify rules to reroute the traffic

E.g.: Server Load Balancing

• Pre-install load-balancing policy

• Split traffic based on source IP

61

src=0*

src=1*

E.g.: Network Virtualization

62

Partition the space of packet headers

Controller #1 Controller #2 Controller #3

OpenFlow in the Wild

• Open Networking Foundation
• Google, Facebook, Microsoft, Yahoo, Verizon, Deutsche Telekom,

and many other companies

• Commercial OpenFlow switches
• HP, NEC, Quanta, Dell, IBM, Juniper, …

• Network operating systems
• NOX, Beacon, Floodlight, Nettle, ONIX, POX, Frenetic

• Network deployments
• Eight campuses, and two research backbone networks

• Commercial deployments (e.g., Google backbone)

A Helpful Analogy

From Nick McKeown’s talk “Making SDN Work” at the Open Networking
Summit, April 2012

64

Vertically integrated

Closed, proprietary

Slow innovation

Small industry

Specialized

Operating

System

Specialized

Operating

System

Specialized

Hardware

Specialized

Hardware

App

Specialized

Applications

Specialized

Applications

Horizontal

Open interfaces

Rapid innovation

Huge industry

MicroprocessorMicroprocessor

Open Interface

LinuxLinux
Mac
OS
Mac
OS

Windows
(OS)
Windows
(OS) or or

Open Interface

Mainframes

Vertically integrated

Closed, proprietary

Slow innovation

App

Horizontal

Open interfaces

Rapid innovation

Control
Plane
Control
Plane

Control
Plane
Control
Plane

Control
Plane
Control
Plane or or

Open Interface

Specialized

Control

Plane

Specialized

Control

Plane

Specialized

Hardware

Specialized

Hardware

Specialized

Features

Specialized

Features

Merchant

Switching Chips

Merchant

Switching Chips

Open Interface

Routers/Switches

Challenges

67

Heterogeneous Switches

• Number of packet-handling rules

• Range of matches and actions

• Multi-stage pipeline of packet processing

• Offload some control-plane functionality (?)

68

access

control

MAC

look-up

IP

look-up

Controller Delay and Overhead

• Controller is much slower the the switch

• Processing packets leads to delay and overhead

• Need to keep most packets in the “fast path”

69

packets

Distributed Controller

70

Network OSNetwork OS

Controller

Application

Network OSNetwork OS

Controller

Application

For scalability

and reliability

Partition and replicate state

Testing and Debugging

• OpenFlow makes programming possible
• Network-wide view at controller

• Direct control over data plane

• Plenty of room for bugs
• Still a complex, distributed system

• Need for testing techniques
• Controller applications

• Controller and switches

• Rules installed in the switches

71

Programming Abstractions

• Controller APIs are low-level
• Thin veneer on the underlying hardware

• Need better languages
• Composition of modules

• Managing concurrency

• Querying network state

• Network-wide abstractions

• Ongoing at Princeton
• http://www.frenetic-lang.org/

72

Controller

Switches

Deep programmability

Well… no.

Can OpenFlow solve
all the problems of networks?

• Advantages
• Opening up the data planes by providing an open vendor-independent API
• Control plane can manage data plane devices through this API

• Disadvantages
• The protocol and the specification are too complex

• Switches must support complicated parsers and pipelines
• Extra features make the software agent more complicated

• Only supports a set of existing protocols
• Not protocol independent

• Consequences
• Parts of spec are implemented by switch vendors

• Breaking the abstraction of one API to rule-them-all

OpenFlow is only the first step…

Switch OS

Driver

OSPF BGP etc.

Switch OS

Driver

OSPF BGP etc.VXLAN

Development cycle of a new network feature

Network
Equipment

Vendor

Network
Owner

ASIC
Team

Software
Team

Feature

Years

When you need a new feature…

1. Equipment vendor can’t just send you a software upgrade

2. New forwarding features take years to develop

3. By then, you’ve figured out a kludge to work around it

4. Your network gets more complicated, more brittle

5. Eventually, when the upgrade is available, it either

• No longer solves your problem, or

• You need a fork-lift upgrade, at huge expense.

Network systems are built “bottoms-up”

Switch OS

Fixed-function switch

Driver

“This is how I process packets …”

Network systems are starting to be
programmed “top-down”

Programmable Switch

Driver

Switch OS“This is precisely how you must
process packets”

P4.org
https://www.sigcomm.org/sites/default/files/ccr/papers/2014/July/0000000-0000004.pdf

Domain Specific Processors

CPU

Computers

Java

Compiler

GPU

Graphics

OpenCL

Compiler

DSP

Signal
Processing

Matlab

Compiler

Machine
Learning

?

TPU

TensorFlow

Compiler

Networking

?

Language

Compiler
>>>

Domain Specific Processors

CPU

Computers

Java

Compiler

GPU

Graphics

OpenCL

Compiler

DSP

Signal
Processing

Matlab

Compiler

Machine
Learning

?

TPU

TensorFlow

Compiler

PISA

Networking

P4

Compiler
>>>

PISA: Protocol Independent Switch Architecture

85

Match+Action

Memory ALU

P
ro

gr
am

m
ab

le
Pa

rs
er

Programmer declares which
headers are recognized

Programmer declares what
tables are needed and how packets are processed

All stages are identical – makes PISA a good “compiler target”

P
ro

gr
am

m
ab

le
Pa

rs
er

PISA: Protocol Independent Switch Architecture

Tofino 6.5Tb/s Switch
December 2016

87

65 x 100GE (or 260 x 25GE)
Same power and cost as fixed-function switches.

How programmability is being used

Reducing complexity1

CompilerCompiler

Reducing complexity

Programmable Switch

Driver

Switch OSswitch.p4switch.p4

IPv4 and IPv6 routing
- Unicast Routing

- Routed Ports & SVI
- VRF

- Unicast RPF
- Strict and Loose

- Multicast
- PIM-SM/DM & PIM-Bidir

Ethernet switching
- VLAN Flooding
- MAC Learning & Aging
- STP state
- VLAN Translation

Load balancing
- LAG
- ECMP & WCMP
- Resilient Hashing
- Flowlet Switching

Fast Failover
– LAG & ECMP

Tunneling
- IPv4 and IPv6 Routing & Switching

- IP-in-IP (6in4, 4in4)
- VXLAN, NVGRE, GENEVE & GRE
- Segment Routing, ILA

MPLS
- LER and LSR
- IPv4/v6 routing (L3VPN)
- L2 switching (EoMPLS, VPLS)
- MPLS over UDP/GRE

ACL
- MAC ACL, IPv4/v6 ACL, RACL
- QoS ACL, System ACL, PBR
- Port Range lookups in ACLs

QOS
- QoS Classification & marking
- Drop profiles/WRED
- RoCE v2 & FCoE
- CoPP (Control plane policing)

NAT and L4 Load Balancing

Security Features
- Storm Control, IP Source Guard

Monitoring & Telemetry
- Ingress Mirroring and Egress Mirroring
- Negative Mirroring
- Sflow
- INT

Counters
- Route Table Entry Counters
- VLAN/Bridge Domain Counters
- Port/Interface Counters

Protocol Offload
- BFD, OAM

Multi-chip Fabric Support
- Forwarding, QOS

IPv4 and IPv6 routing
- Unicast Routing

- Routed Ports & SVI
- VRF

- Unicast RPF
- Strict and Loose

- Multicast
- PIM-SM/DM & PIM-Bidir

Ethernet switching
- VLAN Flooding
- MAC Learning & Aging
- STP state
- VLAN Translation

Load balancing
- LAG
- ECMP & WCMP
- Resilient Hashing
- Flowlet Switching

Fast Failover
– LAG & ECMP

Tunneling
- IPv4 and IPv6 Routing & Switching

- IP-in-IP (6in4, 4in4)
- VXLAN, NVGRE, GENEVE & GRE
- Segment Routing, ILA

MPLS
- LER and LSR
- IPv4/v6 routing (L3VPN)
- L2 switching (EoMPLS, VPLS)
- MPLS over UDP/GRE

ACL
- MAC ACL, IPv4/v6 ACL, RACL
- QoS ACL, System ACL, PBR
- Port Range lookups in ACLs

QOS
- QoS Classification & marking
- Drop profiles/WRED
- RoCE v2 & FCoE
- CoPP (Control plane policing)

NAT and L4 Load Balancing

Security Features
- Storm Control, IP Source Guard

Monitoring & Telemetry
- Ingress Mirroring and Egress Mirroring
- Negative Mirroring
- Sflow
- INT

Counters
- Route Table Entry Counters
- VLAN/Bridge Domain Counters
- Port/Interface Counters

Protocol Offload
- BFD, OAM

Multi-chip Fabric Support
- Forwarding, QOS

CompilerCompiler

Driver

Switch OS

Reducing complexity

My
switch.p4

My
switch.p4

Programmable Switch

How programmability is being used

Adding proprietary features2

Protocol complexity 20 years ago

Ethernet

IPv4 IPX

ethtype ethtype

Datacenter switch today
switch.p4

Adding features: Some examples so far

1. New encapsulations and tunnels

2. New ways to tag packets for special treatment

3. New approaches to routing: e.g. source routing in MSDCs

4. New approaches to congestion control

5. New ways to process packets: e.g. processing ticker-symbols

New applications: Some examples so far

1. Layer-4 Load Balancer1

▪ Replace 100 servers or 10 dedicated boxes with one programmable switch

▪ Track and maintain mapping for 5-10 million http flows

2. Fast stateless firewall

▪ Add/delete and track 100s of thousands of new connections per second

3. Cache for Key-value store2

▪ Memcache in-network cache for 100 servers

▪ 1-2 billion operations per second

[1] “SilkRoad: Making Stateful Layer-4 Load Balancing Fast and Cheap Using Switching ASICs.” Rui Miao et al. Sigcomm 2017.
[2] “NetCache: Balancing Key-Value Stores with Fast In-Network Caching”, Xin Jin et al. To appear at SOSP 2017

How programmability is being used

Silicon independence3

P4 Runtime Open-source project to remotely control P4 switches1

Remote Control PlaneRemote Control Plane

Switch OS Switch OS Switch OS Switch OSTop of Rack
P4 Switches

P4 Runtime

P4 Runtime

O
p

en
C

o
n

fi
g

gR
P

C

P4 Runtime

P4 Runtime

O
p

en
C

o
n

fi
g

gR
P

C

P4 Runtime

P4 Runtime

O
p

en
C

o
n

fi
g

gR
P

C

P4 Runtime

P4 Runtime

O
p

en
C

o
n

fi
g

gR
P

C

P4 Runtime API is:
• Silicon Independent
• Program Independent

P4 Runtime API is:
• Silicon Independent
• Program Independent

[1] “P4 Program-dependent Controller Interface for SDN Applications”, Samar Abdi et al (Google), P4 Workshop 2017

How programmability is being used

Network telemetry4

“Which path did my packet take?”1
“I visited Switch 1 @780ns,

Switch 9 @1.3µs, Switch 12 @2.4µs”

“Which rules did my packet follow?”2

“In Switch 1, I followed rules 75 and 250.
In Switch 9, I followed rules 3 and 80. ”

Rule

1

2

3

…

75 192.168.0/24

…

“How long did my packet queue at each switch?”3 “Delay: 100ns, 200ns, 19740ns”

Time

Queue

“Who did my packet share the queue with?”4

“How long did my packet queue at each switch?”3 “Delay: 100ns, 200ns, 19740ns”

Time

Queue

“Who did my packet share the queue with?”4

Aggressor flow!

We’d like the network to answer these questions

1. “Which path did my packet take?”

2. “Which rules did my packet follow?”

3. “How long did it queue at each switch?”

4. “Who did it share the queues with?”

A programmable device can potentially answer all four questions at line rate.

1

2

3

4

Log, Analyze
Replay

INT: Inband Network Telemetry

Add: SwitchID, Arrival Time,
Queue Delay, Matched Rules, …

Original Packet

Visualize

Log, Analyze
Replay

Visualize

/* INT: add switch id */

action int_set_header_0() {

add_header(int_switch_id_header);

modify_field(int_switch_id_header.switch_id,

global_config_metadata.switch_id);

}

/* INT: add ingress timestamp */

action int_set_header_1() {

add_header(int_ingress_tstamp_header);

modify_field(int_ingress_tstamp_header.ingress_tstamp, i2e_metadata.ingress_tstamp);

}

/* INT: add egress timestamp */

action int_set_header_2() {

add_header(int_egress_tstamp_header);

modify_field(int_egress_tstamp_header.egress_tstamp,

eg_intr_md_from_parser_aux.egress_global_tstamp);

}

P4 code snippet: Insert switch ID, ingress and egress timestamp

