
Programmable Networks
Lecture 1 - Introduction
Sándor Laki, PhD

Communication Networks Laboratory

Dept. of Information Systems, Faculty of Informatics

ELTE Eötvös Loránd University

lakis@elte.hu

http://lakis.web.elte.hu

Slides were inspired by (and are based on) related courses of Nick McKeown (Stanford), Laurent Vanbever (ETH Zurich), Jennifer Rexford
(Princeton) and Noa Zilberman (Cambridge).

mailto:lakis@elte.hu
http://lakis.web.elte.hu/


• Networking is on the verge of a paradigm shift towards deep
programmability

• Huge industrial interest

Programmable Networks



Network management crisis



Networks are large distributed systems



Running distributed algorithms

src: Bob

dst: Google



Routers forward IP packets hop-by-hop
towards their destination

src: Bob

dst: Google



Let’s check what is going on 
between two neighboring routers



Two neighboring routers
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Upon packet reception, routers locally lookup
their forwarding table to know where to send it 
next
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src: Bob

dst: Google

Packet

destination output
Bob IF-1
Google IF-4

Forwarding table



According to the fwd table,
the packet should be directed to IF-4
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According to the fwd table,
the packet should be directed to IF-4
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destination output
Bob IF-2
Google IF-3

Forwarding table

Forwarding is repeated at each router 
until the destination is reached
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destination output
Bob IF-2
Google IF-3

Forwarding table

Forwarding is repeated at each router 
until the destination is reached
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src: Bob

Packet

dst: Google

Forwarding is repeated at each router 
until the destination is reached
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• These distributed algorithms produce the forwarding state
which drives IP traffic to its destination

• Forwarding behavior is implemented by configuring each forwarding
device individually

• Moving to a new network behavior requires the reconfiguration of one or
multiple devices

Network management crisis



Configuring each element is often done manually,
using arcane low-level, vendor-specific “languages”

Source: slides of Laurent Vanbever (ETHZ)



A single mistyped line is enough
to bring down the entire network

Source: slides of Laurent Vanbever (ETHZ)

Anything else than 700 
creates blackholes



• It's not only about the problem of configuring the network

• but the high level of complexity in networks

Network management crisis

Source: Mark Handley. Re-thinking the control architecture of the internet. Keynote talk. REARCH. December 2009.

High Complexity
+ 

Low-level Management 
= 

Problems



* https://dyn.com/blog/widespread-impact-caused-by-level-3-bgp-route-leak/



• A little outage
– for more than 90 mins

• Affected millions of users from the US and world-wide

• Cause: BGP route leaking
• A misconfigured router directed Internet traffic 

from its intended path to somewhere else.

We have a little problem
here…



August 2017

* https://www.theregister.co.uk/2017/08/27/google_routing_blunder_sent_japans_internet_dark/



• People also often mistakenly destroy
their own infrastructure

Human factor



• People also often mistakenly destroy
their own infrastructure

Human factor

„Human factors are responsible
for 50% to 80% of network outages.”

Jupiter Networks, What’s Behind Network Downtime?, 2008



Data networks work better 
during week-ends…☺



“Cost per network outage can be as high as 750 000$”

Source: Smart Management for Robust Carrier Network Health and Reduced TCO!, NANOG54, 2012

Network management crisis



• Networking devices are completely closed
• Closed software

• Closed hardware

Root of the problem



Course goals & organization



• Learn the principles of network programmability
• Both data and control planes

• Learn P4 language

• Get insights into hot research problems

Goals



• Two 7-8 weeks blocks
• Lectures/Excercises

• Principles of SDN and data plane programmability
• Learn how to program in P4

• Group project
• In teams of 2-3 person
• 15 min presentation + report at the end
• Code available on GitHub

• Final grade
• 50% EXAM
• 50% Group project (code, report, presentation)

Logistics



Data, Control and Management planes



Timescales
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Data Control Management

Time-
scale

Packet 
(nsec)

Event (10 
msec to sec)

Human (min 
to hours)

Tasks Forwarding, 
buffering, 
filtering, 
scheduling

Routing, 
circuit 
set-up

Analysis, 
configuration

Location Line-card 
hardware

Router 
software

Humans or 
scripts



Data and Control Planes
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Switching

Fabric

Processor

Line card

Line card

Line card

Line card

Line card

Line card

data plane

control plane



Data Plane

• Streaming algorithms on packets
• Matching on some bits

• Perform some actions

• Wide range of functionality
• Forwarding

• Access control

• Mapping header fields

• Traffic monitoring

• Buffering and marking

• Shaping and scheduling

• Deep packet inspection

33

Switching

Fabric

Processor



Switch: Match on Destination MAC

• MAC addresses are location independent
• Assigned by the vendor of the interface card

• Cannot be aggregated across hosts in LAN
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Router: Match on IP Prefix

• IP addresses grouped into common subnets
• Allocated by ICANN, regional registries, ISPs, and 

within individual organizations

• Variable-length prefix identified by a mask length
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host host host

LAN 1

... host host host

LAN 2

...

router router router
WAN WAN

1.2.3.4 1.2.3.7 1.2.3.156 5.6.7.8 5.6.7.9 5.6.7.212

1.2.3.0/24

5.6.7.0/24

forwarding table

Prefixes may be nested.  

Routers identify the 

longest matching prefix.



Forwarding vs. Routing

• Forwarding: data plane
• Directing a data packet to an outgoing link

• Individual router using a forwarding table

•Routing: control plane
• Computing paths the packets will follow

• Routers talking amongst themselves

• Individual router creating a forwarding 
table

36



Example: Shortest-Path Routing

• Compute: path costs to all nodes
• From a source u to all other nodes

• Cost of the path through each link

• Next hop along least-cost path to s
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Distributed Control Plane

• Link-state routing: OSPF, IS-IS
• Flood the entire topology to all nodes

• Each node computes shortest paths

• Dijkstra’s algorithm
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Distributed Control Plane

• Distance-vector routing: RIP, EIGRP
• Each node computes path cost

• … based on each neighbors’ path cost

• Bellman-Ford algorithm

39

3

2

2

1

1

4

1

4

5

3

u

v

w

x

y

z

s

t

du(z) = min{c(u,v) + dv(z), 
c(u,w) + dw(z)}



Traffic Engineering Problem

• Management plane: setting the weights
• Inversely proportional to link capacity?

• Proportional to propagation delay?

• Network-wide optimization based on traffic?
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Traffic Engineering: Optimization

• Inputs
• Network topology

• Link capacities

• Traffic matrix

• Output
• Link weights

• Objective
• Minimize max-utilized link

• Or, minimize a sum of link congestion
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Transient Routing Disruptions

• Topology changes
• Link weight change

• Node/link failure or recovery

• Routing convergence
• Nodes temporarily disagree how to route

• Leading to transient loops and blackholes
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Management Plane Challenges

• Indirect control
• Changing weights instead of paths

• Complex optimization problem

• Uncoordinated control
• Cannot control which router updates first

• Interacting protocols and mechanisms
• Routing and forwarding

• Naming and addressing

• Access control

• Quality of service

• …
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SDN – Software Defined Networking



The Internet: A Remarkable Story

• Tremendous success
• From research experiment 

to global infrastructure

• Brilliance of under-specifying
• Network: best-effort packet delivery

• Hosts: arbitrary applications

• Enables innovation in applications
• Web, P2P, VoIP, social networks, virtual worlds

• But, change is easy only at the edge… 



Inside the ‘Net: A Different Story…

• Closed equipment
• Software bundled with hardware

• Vendor-specific interfaces

• Over specified
• Slow protocol standardization

• Few people can innovate
• Equipment vendors write the code

• Long delays to introduce new features

Impacts performance, security, reliability, cost…



Networks are Hard to Manage

• Operating a network is expensive
• More than half the cost of a network

• Yet, operator error causes most outages

• Buggy software in the equipment
• Routers with 20+ million lines of code

• Cascading failures, vulnerabilities, etc.

• The network is “in the way”
• Especially a problem in data centers

• … and home networks



Rethinking the “Division of Labor”

48



Traditional Computer Networks

Data plane:

Packet 

streaming

Forward, filter, buffer, mark, 

rate-limit, and measure packets



Traditional Computer Networks

Track topology changes, compute 

routes, install forwarding rules

Control plane:

Distributed algorithms



Traditional Computer Networks

Collect measurements and configure 

the equipment

Management plane:

Human time scale



Death to the Control Plane!

• Simpler management
• No need to “invert” control-plane operations

• Faster pace of innovation
• Less dependence on vendors and standards

• Easier interoperability
• Compatibility only in “wire” protocols

• Simpler, cheaper equipment
• Minimal software



Software Defined Networking (SDN)

API to the data plane

(e.g., OpenFlow)

Logically-centralized control

Switches

Smart,

slow

Dumb,

fast



OpenFlow Networks
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Data-Plane: Simple Packet Handling

• Simple packet-handling rules
• Pattern: match packet header bits

• Actions: drop, forward, modify, send to controller 

• Priority: disambiguate overlapping patterns

• Counters: #bytes and #packets

1. src=1.2.*.*, dest=3.4.5.*  drop                        
2. src = *.*.*.*, dest=3.4.*.*  forward(2)
3.  src=10.1.2.3, dest=*.*.*.*  send to controller

1. src=1.2.*.*, dest=3.4.5.*  drop                        
2. src = *.*.*.*, dest=3.4.*.*  forward(2)
3.  src=10.1.2.3, dest=*.*.*.*  send to controller



Unifies Different Kinds of Boxes

• Router
• Match: longest 

destination IP prefix

• Action: forward out a 
link

• Switch
• Match: destination MAC 

address

• Action: forward or flood

• Firewall
• Match: IP addresses and 

TCP/UDP port numbers

• Action: permit or deny 

• NAT
• Match: IP address and 

port

• Action: rewrite address 
and port
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Controller: Programmability

57

Network OSNetwork OS

Controller Application

Events from switches

Topology changes,

Traffic statistics,

Arriving packets

Commands to switches

(Un)install rules,

Query statistics,

Send packets



Example OpenFlow Applications

• Dynamic access control

• Seamless mobility/migration

• Server load balancing

• Network virtualization

• Using multiple wireless access points

• Energy-efficient networking

• Adaptive traffic monitoring

• Denial-of-Service attack detection

See http://www.openflow.org/videos/



E.g.: Dynamic Access Control

• Inspect first packet of a connection

• Consult the access control policy

• Install rules to block or route traffic



E.g.: Seamless Mobility/Migration

• See host send traffic at new location

• Modify rules to reroute the traffic



E.g.: Server Load Balancing

• Pre-install load-balancing policy

• Split traffic based on source IP

61

src=0*

src=1*



E.g.: Network Virtualization
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Partition the space of packet headers

Controller #1 Controller #2 Controller #3



OpenFlow in the Wild

• Open Networking Foundation
• Google, Facebook, Microsoft, Yahoo, Verizon, Deutsche Telekom, 

and many other companies

• Commercial OpenFlow switches
• HP, NEC, Quanta, Dell, IBM, Juniper, …

• Network operating systems
• NOX, Beacon, Floodlight, Nettle, ONIX, POX, Frenetic

• Network deployments
• Eight campuses, and two research backbone networks

• Commercial deployments (e.g., Google backbone)



A Helpful Analogy

From Nick McKeown’s talk “Making SDN Work” at the Open Networking 
Summit, April 2012
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Vertically integrated

Closed, proprietary

Slow innovation
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Challenges
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Heterogeneous Switches

• Number of packet-handling rules

• Range of matches and actions

• Multi-stage pipeline of packet processing

• Offload some control-plane functionality (?)
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access
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Controller Delay and Overhead

• Controller is much slower the the switch

• Processing packets leads to delay and overhead

• Need to keep most packets in the “fast path”

69

packets



Distributed Controller
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Network OSNetwork OS

Controller 

Application

Network OSNetwork OS

Controller 

Application

For scalability 

and reliability

Partition and replicate state



Testing and Debugging

• OpenFlow makes programming possible
• Network-wide view at controller

• Direct control over data plane

• Plenty of room for bugs
• Still a complex, distributed system

• Need for testing techniques
• Controller applications

• Controller and switches

• Rules installed in the switches

71



Programming Abstractions

• Controller APIs are low-level
• Thin veneer on the underlying hardware

• Need better languages
• Composition of modules

• Managing concurrency

• Querying network state

• Network-wide abstractions

• Ongoing at Princeton
• http://www.frenetic-lang.org/

72

Controller

Switches



Deep programmability



Well… no.

Can OpenFlow solve
all the problems of networks?



• Advantages
• Opening up the data planes by providing an open vendor-independent API
• Control plane can manage data plane devices through this API

• Disadvantages
• The protocol and the specification are too complex

• Switches must support complicated parsers and pipelines
• Extra features make the software agent more complicated

• Only supports a set of existing protocols
• Not protocol independent

• Consequences
• Parts of spec are implemented by switch vendors

• Breaking the abstraction of one API to rule-them-all

OpenFlow is only the first step…



Switch OS

Driver

OSPF BGP etc.



Switch OS

Driver

OSPF BGP etc.VXLAN



Development cycle of a new network feature

Network 
Equipment 

Vendor

Network 
Owner

ASIC
Team

Software
Team

Feature

Years



When you need a new feature…

1. Equipment vendor can’t just send you a software upgrade 

2. New forwarding features take years to develop 

3. By then, you’ve figured out a kludge to work around it

4. Your network gets more complicated, more brittle

5. Eventually, when the upgrade is available, it either 

• No longer solves your problem, or 

• You need a fork-lift upgrade, at huge expense.



Network systems are built “bottoms-up”

Switch OS

Fixed-function switch

Driver

“This is how I process packets …” 



Network systems are starting to be 
programmed “top-down”

Programmable Switch

Driver

Switch OS“This is precisely how you must 
process packets” 



P4.org
https://www.sigcomm.org/sites/default/files/ccr/papers/2014/July/0000000-0000004.pdf



Domain Specific Processors
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PISA: Protocol Independent Switch Architecture
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Programmer declares which 
headers are recognized

Programmer declares what
tables are needed and how packets are processed

All stages are identical – makes PISA a good “compiler target”
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Tofino 6.5Tb/s Switch  
December 2016
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65 x 100GE (or 260 x 25GE)
Same power and cost as fixed-function switches.



How programmability is being used 

Reducing complexity1



CompilerCompiler

Reducing complexity

Programmable Switch

Driver

Switch OSswitch.p4switch.p4

IPv4 and IPv6 routing
- Unicast Routing

- Routed Ports & SVI
- VRF

- Unicast RPF
- Strict and Loose

- Multicast
- PIM-SM/DM & PIM-Bidir

Ethernet switching 
- VLAN Flooding
- MAC Learning & Aging
- STP state 
- VLAN Translation

Load balancing
- LAG
- ECMP & WCMP
- Resilient Hashing 
- Flowlet Switching

Fast Failover
– LAG & ECMP

Tunneling
- IPv4 and IPv6 Routing & Switching

- IP-in-IP (6in4, 4in4)
- VXLAN, NVGRE, GENEVE & GRE
- Segment Routing, ILA

MPLS
- LER and LSR
- IPv4/v6 routing (L3VPN)
- L2 switching (EoMPLS, VPLS)
- MPLS over UDP/GRE

ACL
- MAC ACL, IPv4/v6 ACL, RACL 
- QoS ACL, System ACL, PBR
- Port Range lookups in ACLs 

QOS
- QoS Classification & marking
- Drop profiles/WRED
- RoCE v2 & FCoE
- CoPP (Control plane policing)

NAT and L4 Load Balancing

Security Features
- Storm Control, IP Source Guard

Monitoring & Telemetry
- Ingress Mirroring and Egress Mirroring
- Negative Mirroring
- Sflow
- INT

Counters
- Route Table Entry Counters
- VLAN/Bridge Domain Counters
- Port/Interface Counters

Protocol Offload
- BFD, OAM

Multi-chip Fabric Support
- Forwarding, QOS

IPv4 and IPv6 routing
- Unicast Routing

- Routed Ports & SVI
- VRF

- Unicast RPF
- Strict and Loose

- Multicast
- PIM-SM/DM & PIM-Bidir

Ethernet switching 
- VLAN Flooding
- MAC Learning & Aging
- STP state 
- VLAN Translation

Load balancing
- LAG
- ECMP & WCMP
- Resilient Hashing 
- Flowlet Switching

Fast Failover
– LAG & ECMP

Tunneling
- IPv4 and IPv6 Routing & Switching

- IP-in-IP (6in4, 4in4)
- VXLAN, NVGRE, GENEVE & GRE
- Segment Routing, ILA

MPLS
- LER and LSR
- IPv4/v6 routing (L3VPN)
- L2 switching (EoMPLS, VPLS)
- MPLS over UDP/GRE

ACL
- MAC ACL, IPv4/v6 ACL, RACL 
- QoS ACL, System ACL, PBR
- Port Range lookups in ACLs 

QOS
- QoS Classification & marking
- Drop profiles/WRED
- RoCE v2 & FCoE
- CoPP (Control plane policing)

NAT and L4 Load Balancing

Security Features
- Storm Control, IP Source Guard

Monitoring & Telemetry
- Ingress Mirroring and Egress Mirroring
- Negative Mirroring
- Sflow
- INT

Counters
- Route Table Entry Counters
- VLAN/Bridge Domain Counters
- Port/Interface Counters

Protocol Offload
- BFD, OAM

Multi-chip Fabric Support
- Forwarding, QOS



CompilerCompiler

Driver

Switch OS

Reducing complexity

My 
switch.p4

My 
switch.p4

Programmable Switch



How programmability is being used 

Adding proprietary features2



Protocol complexity 20 years ago

Ethernet

IPv4 IPX

ethtype ethtype



Datacenter switch today
switch.p4



Adding features: Some examples so far

1. New encapsulations and tunnels

2. New ways to tag packets for special treatment

3. New approaches to routing: e.g. source routing in MSDCs

4. New approaches to congestion control

5. New ways to process packets: e.g. processing ticker-symbols



New applications: Some examples so far

1. Layer-4 Load Balancer1

▪ Replace 100 servers or 10 dedicated boxes with one programmable switch

▪ Track and maintain mapping for 5-10 million http flows

2. Fast stateless firewall

▪ Add/delete and track 100s of thousands of new connections per second

3. Cache for Key-value store2

▪ Memcache in-network cache for 100 servers

▪ 1-2 billion operations per second

[1] “SilkRoad: Making Stateful Layer-4 Load Balancing Fast and Cheap Using Switching ASICs.” Rui Miao et al. Sigcomm 2017.  
[2] “NetCache: Balancing Key-Value Stores with Fast In-Network Caching”, Xin Jin et al. To appear at SOSP 2017



How programmability is being used 

Silicon independence3



P4 Runtime  Open-source project to remotely control P4 switches1

Remote Control PlaneRemote Control Plane

Switch OS Switch OS Switch OS Switch OSTop of Rack
P4 Switches

P4 Runtime
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P4 Runtime API is:
• Silicon Independent
• Program Independent

P4 Runtime API is:
• Silicon Independent
• Program Independent

[1] “P4 Program-dependent Controller Interface for SDN Applications”, Samar Abdi et al (Google), P4 Workshop 2017



How programmability is being used 

Network telemetry4



“Which path did my packet take?”1
“I visited Switch 1 @780ns, 

Switch 9 @1.3µs, Switch 12 @2.4µs”

“Which rules did my packet follow?”2

“In Switch 1, I followed rules 75 and 250. 
In Switch 9, I followed rules 3 and 80. ”

# Rule

1

2

3

…

75 192.168.0/24

…



“How long did my packet queue at each switch?”3 “Delay: 100ns, 200ns, 19740ns”

Time

Queue

“Who did my packet share the queue with?”4



“How long did my packet queue at each switch?”3 “Delay: 100ns, 200ns, 19740ns”

Time

Queue

“Who did my packet share the queue with?”4

Aggressor flow!



We’d like the network to answer these questions

1. “Which path did my packet take?”

2. “Which rules did my packet follow?”

3. “How long did it queue at each switch?”

4. “Who did it share the queues with?”

A programmable device can potentially answer all four questions at line rate.

1

2

3

4



Log, Analyze
Replay

INT: Inband Network Telemetry

Add: SwitchID, Arrival Time, 
Queue Delay, Matched Rules, …

Original Packet

Visualize



Log, Analyze
Replay

Visualize

/* INT: add switch id */

action int_set_header_0() {    

add_header(int_switch_id_header);    

modify_field(int_switch_id_header.switch_id, 

global_config_metadata.switch_id);

}

/* INT: add ingress timestamp */

action int_set_header_1() {   

add_header(int_ingress_tstamp_header);

modify_field(int_ingress_tstamp_header.ingress_tstamp, i2e_metadata.ingress_tstamp);

}

/* INT: add egress timestamp */

action int_set_header_2() {    

add_header(int_egress_tstamp_header);    

modify_field(int_egress_tstamp_header.egress_tstamp,      

eg_intr_md_from_parser_aux.egress_global_tstamp);

}

P4 code snippet: Insert switch ID, ingress and egress timestamp


