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Last weekon
Computer Networks



Applications

Χōǳƛƭǘ ƻƴΧ

Reliable (or unreliable) transport

Χōǳƛƭǘ ƻƴΧ

Best-effort global packet delivery

Χōǳƛƭǘ ƻƴΧ

Best-effort local packet delivery

Χōǳƛƭǘ ƻƴΧ

Physical transfer of bits

Each layer provides a service to the layer above
by using the services of the layer directly below it



Since when bits arrive they must make it to
the application, all the layers exist on a host
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How long does it take for a packet to reach the destination

What fraction of packets sent to a destination are dropped?

At what rate is the destination receiving data from the source?

A network connection is characterized by
its delay, loss rate and throughput

delay throughputloss



Thisweek
FundamentalchallengesςPart I

Routing

Howdo you deliver packet
from a sourceto destination?



Think of IP packets as envelopes

Packet



Theyhave

a header

& 

a payload

Think of IP packets as envelopes

Payload

Header



E.g. identify the

source

destination

of the communication

The headercontainsmetadataneededfor
forwardingthe packet

Payload

srcaddress

dst address



The payloadcontainsthe datato be delivered

Payload



Routers forward IP packets hop-by-hop
towardstheir destination
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Routers forward IP packets hop-by-hop
towardstheir destination

src: Bob

dst: Google



[ŜǘΩǎ ŎƘŜŎƪ ǿƘŀǘ ƛǎ ƎƻƛƴƎ ƻƴ 
between two neighboring routers



Twoneighboringrouters
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Upon packet reception, routers locallylookup
their forwarding table to know where to send it next

Data Plane Data Plane

IF-2

IF-1

IF-4

IF-3

IF-2

IF-1

IF-4

IF-3

LOSA HOUS

src: Bob

dst: Google

Packet

destination output
Bob IF-1
Google IF-4

Forwarding table



According to the fwd table,
the packet should be directed to IF-4
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According to the fwd table,
the packet should be directed to IF-4

Data Plane Data Plane

IF-2 IF-4

IF-3

IF-2

IF-1

IF-4

IF-3

LOSA HOUS

src: Bob

Packet

IF-1

dst: Google



destination output
Bob IF-2
Google IF-3

Forwarding table

Forwarding is repeated at each router 
until the destination is reached
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destination output
Bob IF-2
Google IF-3

Forwarding table

Forwarding is repeated at each router 
until the destination is reached
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IF-2 IF-4

IF-3
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src: Bob

Packet

IF-1

dst: Google



src: Bob

Packet

dst: Google

Forwarding is repeated at each router 
until the destination is reached

Data Plane Data Plane

IF-2

IF-3 IF-1

IF-4

IF-3

LOSA HOUS

IF-1

IF-4 IF-2



Nowadays network equipmentscan have
Terabits per second of forwarding capacity



criteria destination mandatory (why?)

source requires n2 states

input port traffic engineering

+any other header fields

Forwarding decisions necessarily depend on
the destination, but can also depend on other criteria



criteria destination mandatory (why?)

source requires n2 states

input port traffic engineering

+any other header fields

Forwarding decisions necessarily depend on
the destination, but can also depend on other criteria



Paths from different sources can differ
[ŜǘΩǎ ŎƻƴǎƛŘŜǊ source- and destination-based routing

A

B

C

src dst output
A C East
B C South 

Forwarding table



Paths from different sources coincide once they overlap
With destination-based routing

A

B

C

Forwarding table

dst output
C East
A North
B West 



Set of paths to the destination produce 
a spanning treerooted at the destination:

cover every router exactly once

only one outgoing arrow at each router

Once pathsto destination meet,
theywill neversplit



An example of a spanning tree for destination C

C



In the rest of the lecture,
ǿŜΩƭƭconsiderdestination-basedrouting

The default in the Internet



Where are these forwarding tables coming from?

Data Plane Data Plane

IF-2 IF-4

IF-3

IF-2

IF-1

IF-4

IF-3

destination output
Bob IF-1
Google IF-4

Forwarding table

IF-1

destination output
Bob IF-2
Google IF-3

Forwarding table



In addition to a data plane
Χ

Data Plane Data Plane

IF-2

IF-1

IF-4

IF-3

IF-2

IF-1

IF-4

IF-3



In addition to a data plane,
routers are also equipped with a control plane

Data Plane Data Plane

IF-2

IF-1

IF-4

IF-3

IF-2
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Control Plane Control Plane



/ƻƴǘǊƻƭ ǇƭŀƴŜ Ґ ǘƘŜ ǊƻǳǘŜǊΩǎ ōǊŀƛƴ



Roles Routing

Configuration

Statistics (counters, meters, etc.)

Χ

/ƻƴǘǊƻƭ ǇƭŀƴŜ Ґ ǘƘŜ ǊƻǳǘŜǊΩǎ ōǊŀƛƴ



Routingis the control plane process that
computesand populatesthe forwarding tables

destination output
Bob IF-1
Google IF-4

Forwarding table

destination output
Bob IF-2
Google IF-3

Forwarding table

Control Plane Control Plane



While forwardingis a localprocess,
routingis inherently a globalprocess

A router should know how the network lookslike
for directing the packet towards the destination.



forwarding routing

Goal directing a packet to computing the path
an outgoing link packets will follow

Scope local global, network wide

Implementation hardware (usually) software (always)
(software is also possible)

Timescale nanoseconds 10s of milliseconds

Forwarding vs routing



[Definition]

A global forwarding state is valid if 

it alwaysdelivers packets to the correct destination

The goal of routing is to compute 
valid global forwarding state



[Theorem]

A global forwarding state is valid iff (iff = if and only if)

A) there are no dead ends

dead end = i.e. no outgoing port defined in the table for a given dst

B) there are no loops

loop = i.e. packets going around the same set of nodes

Valid states



A global forwarding state is valid if and only if
there are no dead ends

A

B

C

dst output
C East
A North
B West 

dst output
A West
B West 

No entry for dst C
It drops all traffic to C



A global forwarding state is valid if and only if
there are no forwarding loops

A

B

C

dst output
C East
A North
B West 

dst output
C West
A West
B West

It bounces  traffic back



If a routing state is valid
then there are no loops or dead-end

[Proof]

If you run into a dead-end or a loop

ȅƻǳΩƭƭ neverreach the destination

Proving the necessary condition is easy



If a routing state has no dead end and no loop 
then it is valid

[Proof]

A) Assumption: there is only a finite number of ports to visit

B) A packet can never enter a switch via the same port,

otherwise it is a loop (which does not exist by assumption)

C) As such, the packet musteventuallyreach the destination

Proving the sufficient condition is more subtle



How do we verify that a forwarding 
state is valid?



A simplealgorithmfor onedestination

1) Mark all outgoing ports with an arrow

2) Eliminate all links with no arrow

3) State is valid iff the remaining graph is a spanning-tree

Verifying that a routing state is valid is easy



C

dst output
C East

dst output
C East

Given a graph



Mark all outgoing ports with an arrow

C



Eliminate links with no arrow

C



Eliminate links with no arrow

C

The result is a spanning tree.
This is a valid routing state



Example2
Mark all outgoing ports with an arrow

C



Example2
Eliminate links with no arrow

C



Example2
Eliminate links with no arrow

C

The result is not a spanning-tree.
The routing state is not valid

dead-end

loop



How do we compute valid forwarding 
state?



Preventingdead-ends

easy

Preventingloops

harderςwe will focuson thisΧ

Producing valid routing state is hard,
but doable



Essentially, there are three ways to compute valid routing state

Intuition Example

1) Usetree-like topologies Spanning-tree

2) Relyon globalnetwork view Link-staterouting
SDN

3) Relyon distributed computation Distancevectorrouting
BGP

Existing routing protocols differ in
howtheyavoidloops



1) Usetree-like topologies Spanning-tree



A simplealgorithm

1) Take an arbitrary topology

2) Build a spanning tree and ignore all other links

3) Done!

Whydoesit work?

Spanning-trees have only one path

betweenany two nodes

The easiest way to avoid loops is to route traffic
on a loop-free topology



In practice,there can be many spanning-trees 
for a given topology



Spanningtree #1



Spanningtree #2



Spanningtree #3



²ŜΩƭƭ ǎŜŜ Ƙƻǿ ǘƻ ŎƻƳǇǳǘŜ ǎǇŀƴƴƛƴƎ-trees in 2 weeks.
For now, assume it is possible



Literally just floodthe packets everywhere

When a packet arrives,
simply send it on all ports

Once we have a spanning tree,
forwarding on it is easy

A

B



uselesstransmissions

Floodingis quite wasteful

A

B



Problem

The issue is that nodes do not know theirrespective locations

Solution

Nodes can learn how to reach nodesby rememberingwhere 
packets came from

Intuition if floodpacketfrom nodeA entered switchX on port 4

then switchX canuseport 4 to reachnodeA



A

B



A

B

NodeA canbe reachedthrough
this link



A

B

Bluenodeslearn
how to reachnodeA
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Bluenodeslearn
how to reachnodeA



A

B

Bluenodeslearn
how to reachnodeA



A

B

All nodesknow how to
reachnodeA



A

B

B answersback to A
No needfor floodinganymore

enabling the blue nodes to also learn 
where B is



A

B

Learningis topology- dependent

The yellownodes only know how to reach A (not B)



CƭƻƻŘ ŦƛǊǎǘ ǇŀŎƪŜǘ ǘƻ ƴƻŘŜ ȅƻǳΩǊŜ ǘǊȅƛƴƎ ǘƻ ǊŜŀŎƘ

all switches learn where you are

When destination answers, some switches learn where it is

some because packet to you is not flooded anymore

The decision to flood or not is done on each switch

depending on who has communicated before

Routing by flooding on a spanning-tree
in a nutshell



advantages disadvantages

plug-and-play only usethe links of the spanning-tree

configuration-free eliminatemanylinksfrom the topology

inefficient

automaticallyadapts slow to react to failures

to movinghost slow to react to host movement

Spanning-tree in practice
usedin Ethernet



2) Relyonglobalnetworkview Link-staterouting



Once a node u knows the entire topology,

it can compute shortest-ǇŀǘƘǎ ǳǎƛƴƎ 5ƛƧƪǎǘǊŀΩǎ ŀƭƎƻǊƛǘƘƳ

Initialization Loop

If each router knows the entire graph,
it can locallycompute paths to all other nodes

S = {u} 
for all nodes v:

if (v is adjacentto u):
D(v) = c(u,v)

else:
5όǾύ Ґ қ

while not all nodes in S:
add w with the smallest D(w) to S
update D(v) for all adjacentv (to w) not in S:

D(v) = min{D(v), D(w) + c(w,v)}



Once a node u knows the entire topology,

it can compute shortest-ǇŀǘƘǎ ǳǎƛƴƎ 5ƛƧƪǎǘǊŀΩǎ ŀƭƎƻǊƛǘƘƳ

Initialization Loop

If each router knows the entire graph,
it can locallycompute paths to all other nodes

S = {u} 
while not all nodes in S:

for all nodes v:
if (v is adjacentto u):

D(v) = c(u,v)
else:

5όǾύ Ґ қ

while not all nodes in S:
add w with the smallest D(w) to S
update D(v) for all adjacentv (to w) not in S:

D(v) = min{D(v), D(w) + c(w,v)}

u is the noderunningthe
algotrithm

The weight of link 
connectingu and v



5ƛƧƪǎǘǊŀΩǎ !ƭƎƻǊƛǘƘƳ - Example
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iteration #1 search for minimum through n nodes

iteration #2 search for minimum through n-1 nodes

iteration #n search for minimum through 1 node

operations => O(n2)

This algorithm has a O(n2) complexity
where n is the number of nodes in the graph



iteration #1 search for minimum through n nodes

iteration #2 search for minimum through n-1 nodes

iteration #n search for minimum through 1 node

operations => O(n2)

This algorithm has a O(n2) complexity
where n is the number of nodes in the graph

Better implementations rely on a heap
to find the next node to expand,

bringing down the complexity to O(n log n)



Building a globalviewis 
essentiallyequalto solvingjigsawpuzzle



NodeA onlyknows: 

A) it is connectedto B and D

B) the weigthsto reachthem
(by configuration). 

Initially,
routers only know their ID and their neighbors

10

5

B

A

D



Node!Ωǎadvertisement

edge(A,B); cost=10

edge(A,D); cost=5

At the end of the flooding process,

everybody share the exact 
same view of the network

Each routers builds a message (known as Link-StateAdvertisement(LSA))
and floods it (reliably) in the entire network

10
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64
9

7

2 3A

B

E

C

D



Dijkstra will always converge to a unique stable state
when run on staticweights

Dynamicallychangingweightscanlead to oscillations



Solution#1 Use static weights

ƛΦŜΦ ŘƻƴΩǘ Řƻ ŎƻƴƎŜǎǘƛƻƴ-aware routing

Solution#2 Use randomness to break self-synchronization

wait(random(0,50ms)); send(new_link_weight);

Solution#3 Have the routers agree on the paths to use

essentially meaning to rely on circuit-switching

The problem of oscillation is fundamental to
congestion-based routing with local decisions



3) Relyondistributedcomputation Distance-vectorrouting



Let dx(y) be the cost of the least-cost pathknown by x to reach y

1) Each node bundles these distancesinto one message (called a vector)

that it repeatedly sends until convergence to all its neighbors

2) Each node updates its distancesōŀǎŜŘ ƻƴ ƴŜƛƎƘōƻǊǎΩ ǾŜŎǘƻǊǎΥ

dx(y) = min{ c(x,v) + dv(y) }

Instead of locally compute paths based on the graph,
paths can be computed in a distributed fashion



[ŜǘΩǎ ŎƻƳǇǳǘŜ ǘƘŜ ǎƘƻǊǘŜǎǘ-path
from u to D

u

A B

C
D

E
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3 1

1

5

1

2



The values computed by a node u
depends on what it learns from its neighbors (Aand E)

u

A B

C
D

E

2

3 1

1

5

1

2

dx(y) = min{ c(x,v) + dv(y) }
over all neighborsv

Now:
du(D) = min{ c(u, A) + dA(D),

c(u, E) + dE(D) }



To unfold the recursion,
ƭŜǘΩǎ ǎǘŀǊǘ ǿƛǘƘ ǘƘŜ ŘƛǊŜŎǘ ƴŜƛƎƘōƻǊ ƻŦ D

u

A B

C
D

E

2

3 1

1

5

1

2
dB(D) = 2

dC(D) = 5



Band Cannouncetheir vector to their neighbors,
enabling Ato compute its shortest-path

u

A B

C
D

E

2

3 1

1

5

1

2

dA(D) = min { 1 + dB(D),
1 + dC(D) }

= min { 1 + 2, 1 + 5 } 

= 3



Band Cannouncetheir vector to their neighbors,
enabling Ato compute its shortest-path

u

A B

C
D

E

2

3 1

1

5

1

2

dA(D) = min { 1 + dB(D),
1 + dC(D) }

= min { 1 + 2, 1 + 5 } 

= 3

dE(D) = min { 1 + dC(D) }

= min { 1 + 5 } 

= 6

As soon as a distance vector changes,
each node propagates it to its neighbor



Eventually, the processconverges
to the shortest-path distance to each destination

u

A B

C
D

E

2

3 1

1

5

1

2

du(D) = min { 2 + dA(D),
3 + dE(D) }

= min { 2 + 3, 3 + 6 } 

= 5

u directsthe traffic to the bestneighbor
bestnb = the onewith the smallestcost in the forwardingtable



Evaluating the complexityof DV is harder,
ǿŜΩƭƭ ƎŜǘ ōŀŎƪ ǘƻ ǘƘŀǘ ƛƴ ŀ ŎƻǳǇƭŜ ƻŦ ǿŜŜƪǎ



To be continuedΧ


